945 resultados para Antigens, Helminth
Resumo:
Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.
Resumo:
BACKGROUND: The bacterial biothreat agents Burkholderia mallei and Burkholderia pseudomallei are the cause of glanders and melioidosis, respectively. Genomic and epidemiological studies have shown that B. mallei is a recently emerged, host restricted clone of B. pseudomallei. RESULTS: Using bacteriophage-mediated immunoscreening we identified genes expressed in vivo during experimental equine glanders infection. A family of immunodominant antigens were identified that share protein domain architectures with hemagglutinins and invasins. These have been designated Burkholderia Hep_Hag autotransporter (BuHA) proteins. A total of 110/207 positive clones (53%) of a B. mallei expression library screened with sera from two infected horses belonged to this family. This contrasted with 6/189 positive clones (3%) of a B. pseudomallei expression library screened with serum from 21 patients with culture-proven melioidosis. CONCLUSION: Members of the BuHA proteins are found in other Gram-negative bacteria and have been shown to have important roles related to virulence. Compared with other bacterial species, the genomes of both B. mallei and B. pseudomallei contain a relative abundance of this family of proteins. The domain structures of these proteins suggest that they function as multimeric surface proteins that modulate interactions of the cell with the host and environment. Their effect on the cellular immune response to B. mallei and their potential as diagnostics for glanders requires further study.
Resumo:
Background: Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives: We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods: We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi-basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results: The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER. C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions: This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
Influenza virus epidemics occur on an annual basis and cause severe disease in the very young and old. The vaccine administered to high-risk groups is generated by amplifying reassortant viruses, with chronologically relevant viral surface antigens, in eggs. Every 20 years or so, influenza pandemics occur causing widespread fatality in all age groups. These viruses display novel viral surface antigens acquired from a zoonotic source, and vaccination against them poses new issues since production of large amounts of a respiratory virus containing novel surface antigens could be dangerous for those involved in manufacture. To minimise risks, it is advisable to use a virus whose genetic backbone is highly attenuated in man. Traditionally, the A/PR/8/34 strain of virus is used, however, the genetic basis of its attenuation is unclear. Cold-adapted (CA) strains of the influenza virus are all based on the H2N2 subtype, itself a virus with pandemic potential, and again the genetic basis of temperature sensitivity is not yet established. Reverse genetics technology allows us to engineer designer influenza viruses to order. Using this technology, we have been investigating mutations in several different gene segments to effectively attenuate potential vaccine strains allowing the safe production of vaccine to protect against the next pandemic. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
As an immunogen of the coronavirus, the nucleoprotein (N) is a potential antigen for the serological monitoring of infectious bronchitis virus (IBV). In this report, recombinant N protein from the Beaudette strain of IBV was produced and purified from Escherichia coli as well as Sf9 ( insect) cells, and used for the coating of enzyme-linked immunosorbent assay ( ELISA) plates. The N protein produced in Sf9 cells was phosphorylated whereas N protein from E. coli was not. Our data indicated that N protein purified from E. coli was more sensitive to anti-IBV serum than the protein from Sf9 cells. The recombinant N protein did not react with the antisera to other avian pathogens, implying that it was specific in the recognition of IBV antibodies. In addition, the data from the detection of field samples and IBV strains indicated that using the recombinant protein as coating antigen could achieve an equivalent performance to an ELISA kit based on infected material extracts as a source of antigen(s). ELISAs based on recombinant proteins are safe ( no live virus), clean ( only virus antigens are present), specific ( single proteins can be used) and rapid ( to respond to new viral strains and strains that cannot necessarily be easily cultured).
Resumo:
Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.
Resumo:
In recent years there has been a resurgence of interest in the biological roles of carbohydrates and as a result it is now known that carbohydrates are involved in a vast array of disease processes. This review summarises progress in the development of carbohydrate-based therapeutics that involve: inhibition of carbohydrate-lectin interactions; immunisation, using monoclonal antibodies for carbohydrate antigens; inhibition of enzymes that synthesise disease-associated carbohydrates; replacement of carbohydrate-processing enzymes; targeting of drugs to specific disease cells via carbohydrate-lectin interactions; carbohydrate based anti-thrombotic agents.
Resumo:
Background The gut and immune system form a complex integrated structure that has evolved to provide effective digestion and defence against ingested toxins and pathogenic bacteria. However, great variation exists in what is considered normal healthy gut and immune function. Thus, whilst it is possible to measure many aspects of digestion and immunity, it is more difficult to interpret the benefits to individuals of variation within what is considered to be a normal range. Nevertheless, it is important to set standards for optimal function for use both by the consumer, industry and those concerned with the public health. The digestive tract is most frequently the object of functional and health claims and a large market already exists for gut-functional foods worldwide. Aim To define normal function of the gut and immune system and describe available methods of measuring it. Results We have defined normal bowel habit and transit time, identified their role as risk factors for disease and how they may be measured. Similarly, we have tried to define what is a healthy gut flora in terms of the dominant genera and their metabolism and listed the many, varied and novel methods for determining these parameters. It has proved less easy to provide boundaries for what constitutes optimal or improved gastric emptying, gut motility, nutrient and water absorption and the function of organs such as the liver, gallbladder and pancreas. The many tests of these functions are described. We have discussed gastrointestinal well being. Sensations arising from the gut can be both pleasant and unpleasant. However, the characteristics of well being are ill defined and merge imperceptibly from acceptable to unacceptable, a state that is subjective. Nevertheless, we feel this is an important area for future work and method development. The immune system is even more difficult to make quantitative judgements about. When it is defective, then clinical problems ensure, but this is an uncommon state. The innate and adaptive immune systems work synergistically together and comprise many cellular and humoral factors. The adaptive system is extremely sophisticated and between the two arms of immunity there is great redundancy, which provides robust defences. New aspects of immune function are discovered regularly. It is not clear whether immune function can be "improved". Measuring aspects of immune function is possible but there is no one test that will define either the status or functional capacity of the immune system. Human studies are often limited by the ability to sample only blood or secretions such as saliva but it should be remembered that only 2% of lymphocytes circulate at any given time, which limits interpretation of data. We recommend assessing the functional capacity of the immune system by: measuring specific cell functions ex vivo, measuring in vivo responses to challenge, e. g. change in antibody in blood or response to antigens, determining the incidence and severity of infection in target populations during naturally occurring episodes or in response to attenuated pathogens.
Resumo:
OBJECTIVES: To test the hypothesis that a micronutrient supplement can improve seroconversion after influenza immunization in older institutionalized people. DESIGN: Randomized, double-blind, placebo-controlled study. SETTING: Nursing and residential homes in Liverpool, United Kingdom. PARTICIPANTS: One hundred sixty-four residents aged 60 and older from 31 homes were initially randomized; of these, 119 (72.6%) completed the study. INTERVENTION: Participants were randomized to receive a micronutrient supplement providing the reference nutrient intake for all vitamins and trace elements or identical placebo. Tablets were taken over an 8-week period during September and October 2000; influenza vaccine was administered 4 weeks after their commencement. MEASUREMENTS: The hemagglutination-inhibiting antibody response as defined by a fourfold or greater titer rise over 4 weeks and assessed separately for each of the three antigens contained in the 2000/2001 influenza vaccine (A/New Caledonia/20/99 (H1N1), A/Moscow/10/99 (H3N2), B/Beijing/184/93 (B)). RESULTS: Despite a significant increase in serum concentrations of vitamins A, C, D-3, E, folate, and selenium in the supplemented group, there was no significant difference between groups (supplemented vs placebo, respectively) in the proportion of participants seroconverting to H1N1 (41% vs 49%, P=.374), H3N2 (49% vs 58%, P=.343), or B (41% vs 40%, P=.944). CONCLUSION: A micronutrient supplement providing the reference nutrient intake administered over 8 weeks had no beneficial effect on antibody response to influenza vaccine in older people living in long-term care.
Resumo:
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates.
Resumo:
We present a simple device for multiplex quantitative enzyme-linked immunosorbant assays (ELISA) made from a novel melt-extruded microcapillary film (MCF) containing a parallel array of 200µm capillaries along its length. To make ELISA devices different protein antigens or antibodies were immobilised inside individual microcapillaries within long reels of MCF extruded from fluorinated ethylene propylene (FEP). Short pieces of coated film were cut and interfaced with a pipette, allowing sequential uptake of samples and detection solutions into all capillaries from a reagent well. As well as being simple to produce, these FEP MCF devices have excellent light transmittance allowing direct optical interrogation of the capillaries for simple signal quantification. Proof of concept experiments demonstrate both quantitative and multiplex assays in FEP MCF devices using a standard direct ELISA procedure and read using a flatbed scanner. This new multiplex immunoassay platform should find applications ranging from lab detection to point-of-care and field diagnostics.
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.
Resumo:
RATIONALE: Children with congenital heart disease are at risk of gut barrier dysfunction and translocation of gut bacterial antigens into the bloodstream. This may contribute to inflammatory activation and organ dysfunction postoperatively. OBJECTIVES: To investigate the role of intestinal injury and endotoxemia in the pathogenesis of organ dysfunction after surgery for congenital heart disease. METHODS: We analyzed blood levels of intestinal fatty acid binding protein and endotoxin (endotoxin activity assay) alongside global transcriptomic profiling and assays of monocyte endotoxin receptor expression in children undergoing surgery for congenital heart disease. MEASUREMENTS AND MAIN RESULTS: Levels of intestinal fatty acid binding protein and endotoxin were greater in children with duct-dependent cardiac lesions. Endotoxemia was associated with severity of vital organ dysfunction and intensive care stay. We identified activation of pathogen-sensing, antigen-processing, and immune-suppressing pathways at the genomic level postoperatively and down-regulation of pathogen-sensing receptors on circulating immune cells. CONCLUSIONS: Children undergoing surgery for congenital heart disease are at increased risk of intestinal mucosal injury and endotoxemia. Endotoxin activity correlates with a number of outcome variables in this population, and may be used to guide the use of gut-protective strategies.