937 resultados para Android,Multihoming,LISP,LISPmob,Performance,Test,Development,Analysis
Resumo:
O aumento da carga física do jogo de futebol provocou uma maior exigência e desenvolvimento na condição física dos jogadores e por inerência, nos árbitros. Assim o presente estudo procurou identificar e desenvolver um teste para a avaliação dos árbitros de futebol. Foi realizada uma análise sistemática para identificação e descrição da produção científica na área da arbitragem no sentido de sustentar o argumento de insuficiência dos testes vigentes e propor o novo teste que denominámos ETSOR. Após esta, foi realizada uma aplicação piloto com recurso ao método de estudo de caso para testagem do ETSOR. Os resultados revelaram que existe uma dispersão nas formas e conteúdos abordados face à caracterização do árbitro de futebol de 11. A partir do método de meta-análise, é apresentada uma proposta de categorização dos conteúdos. Os resultados revelaram também que o teste FIFA não identifica as intensidades irregulares que decorrem das situações do jogo, nem representa a uma distribuição das intensidades dos esforços dos árbitros nas situações de jogo. O Teste ETSOR, como teste ecológico, capta em termos de densidade, de distribuição, de variação da potência e de resistência, os esforços dos árbitros nas situações de jogo, como testa a características das intensidades máximas da atividade do árbitro. Por último, os resultados reforçaram que este processo que se deve estender de forma periodizada ao longo de cada época tornando-se útil, na medida em que permite a otimização e monitorização da prestação do árbitro.
Resumo:
In this paper, a tool to improve vocal tuning in Android devices is presented. This application aims to offer exercises to practice and improve singing skills. The designed tool includes two main functionalities: sound synthesis, to provide with singing sound references, and fundamental frequency analysis, to analize the sound and check if the user sings the right musical note. The well-known Yin algorithm has been selected to perform the fundamental frequency analysis. Three different singing exercises are included: sing single notes, sing intervals and sing a note in order to complete a chord. The system also includes a graphical interface in which musical notation is employed to write down the singing sound. The system has been evaluated in order to test out its correct performance regarding both the analysis and synthesis of musical sounds.
Resumo:
Over 2 million Anterior Cruciate Ligament (ACL) injuries occur annually worldwide resulting in considerable economic and health burdens (e.g., suffering, surgery, loss of function, risk for re-injury, and osteoarthritis). Current screening methods are effective but they generally rely on expensive and time-consuming biomechanical movement analysis, and thus are impractical solutions. In this dissertation, I report on a series of studies that begins to investigate one potentially efficient alternative to biomechanical screening, namely skilled observational risk assessment (e.g., having experts estimate risk based on observations of athletes movements). Specifically, in Study 1 I discovered that ACL injury risk can be accurately and reliably estimated with nearly instantaneous visual inspection when observed by skilled and knowledgeable professionals. Modern psychometric optimization techniques were then used to develop a robust and efficient 5-item test of ACL injury risk prediction skill—i.e., the ACL Injury-Risk-Estimation Quiz or ACL-IQ. Study 2 cross-validated the results from Study 1 in a larger representative sample of both skilled (Exercise Science/Sports Medicine) and un-skilled (General Population) groups. In accord with research on human expertise, quantitative structural and process modeling of risk estimation indicated that superior performance was largely mediated by specific strategies and skills (e.g., ignoring irrelevant information), independent of domain general cognitive abilities (e.g., metal rotation, general decision skill). These cognitive models suggest that ACL-IQ is a trainable skill, providing a foundation for future research and applications in training, decision support, and ultimately clinical screening investigations. Overall, I present the first evidence that observational ACL injury risk prediction is possible including a robust technology for fast, accurate and reliable measurement—i.e., the ACL-IQ. Discussion focuses on applications and outreach including a web platform that was developed to house the test, provide a repository for further data collection, and increase public and professional awareness and outreach (www.ACL-IQ.org). Future directions and general applications of the skilled movement analysis approach are also discussed.
Resumo:
Altough nowadays DMTA is one of the most used techniques to characterize polymers thermo-mechanical behaviour, it is only effective for small amplitude oscillatory tests and limited to a single frequency analysis (linear regime). In this thesis work a Fourier transform based experimental system has proven to give hint on structural and chemical changes in specimens during large amplitude oscillatory tests exploiting multi frequency spectral analysis turning out in a more sensitive tool than classical linear approach. The test campaign has been focused on three test typologies: Strain sweep tests, Damage investigation and temperature sweep tests.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
Introduction. Test of Everyday Attention for Children (TEA-Ch) has been validated in different countries demonstrating that it is an instrument with a correct balance between reliability and duration. Given the shortage of trustworthy instruments of evaluation in our language for infantile population we decide to explore the Spanish version of the TEA-Ch. Methods. We administered TEA-Ch (version A) to a sample control of 133 Spanish children from 6 to 11 years enrolled in school in the Community of Madrid. Four children were selected at random by course of Primary Education, distributing the sex of equivalent form. Descriptive analysis and comparison by ages and sex in each of the TEA-Ch's subtests were conducted to establish a profile of the sample. In order to analyze the effect of the age, subjects were grouped in six sub-samples: 6, 7, 8, 9, 10 and 11 years-old. Results. This first descriptive analysis demonstrates age exerted a significant effect on each measure, due to an important "jump" in children's performance between 6 and 7 years-old. The effect of sex was significant only in two visual attention measures (Sky Search & Map) and interaction age and sex exerted a significant effect only in the dual task (Score DT). Conclusions. The results suggest that the Spanish version of the TEA-Ch (A) might be a useful instrument to evaluate attentional processes in Spanish child population.
Resumo:
The present work aims to allow developers to implement small features on a certain Android application in a fast and easy manner, as well as provide their users to install them ondemand, i.e., they can install the ones they are interested in. These small packages of features are called plugins, and the chosen development language to develop these in was JavaScript. In order to achieve that, an Android framework was developed that enables the host application to install, manage and run these plugins at runtime. This framework was designed to have a very clean and almost readable API, which allowed for better code organization and maintainability. The implementation used the Google’s engine “V8” to interpret the JavaScript code and through a set of JNI calls made that code call certain Android methods previously registered in the runtime. In order to test the framework, it was integrated with the client’s communication application RCS+ using two plugins developed alongside the framework. Although these plugins had only the more common requirements, they were proven to work successfully as intended. Concluding, the framework although successful made it clear that this kind of development through a non-native API has its set of difficulties especially regarding the implementation of complex features.
Resumo:
Our aim was to determine the normative reference values of cardiorespiratory fitness (CRF) and to establish the proportion of subjects with low CRF suggestive of future cardio-metabolic risk.
Resumo:
Some decades of research on emotional development have underlined the contribution of several domains to emotional understanding in childhood. Based on this research, Pons and colleagues (Pons & Harris, 2002; Pons, Harris & Rosnay, 2004) have proposed the Test of Emotion Comprehension (TEC) which assesses nine domains of emotional understanding, namely the recognition of emotions, based on facial expressions; the comprehension of external emotional causes; impact of desire on emotions; emotions based on beliefs; memory influence on emotions; possibility of emotional regulation; possibility of hiding an emotional state; having mixed emotions; contribution of morality to emotional experiences. This instrument was administered individually to 182 Portuguese children aged between 8 and 11 years, of 3rd and 4th grades, in public schools. Additionally, we used the Socially in Action-Peers (SAp) (Rocha, Candeias & Lopes da Silva, 2012) to assess TEC’s criterion-related validity. Mean differences results in TEC by gender and by socio-economic status (SES) were analyzed. The results of the TEC’s psychometric analysis were performed in terms of items’ sensitivity and reliability (stability, test-retest). Finally, in order to explore the theoretical structure underlying TEC a Confirmatory Factor Analysis and a Similarity Structure Analysis were computed. Implications of these findings for emotional understanding assessment and intervention in childhood are discussed.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.
Resumo:
This thesis describes the development of the Sample Fetch Rover (SFR), studied for Mars Sample Return (MSR), an international campaign carried out in cooperation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The focus of this document is the design of the electro-mechanical systems of the rover. After placing this work into the general context of robotic planetary exploration and summarising the state of the art for what concerns Mars rovers, the architecture of the Mars Sample Return Campaign is presented. A complete overview of the current SFR architecture is provided, touching upon all the main subsystems of the spacecraft. For each area, it is discussed what are the design drivers, the chosen solutions and whether they use heritage technology (in particular from the ExoMars Rover) or new developments. This research focuses on two topics of particular interest, due to their relevance for the mission and the novelty of their design: locomotion and sample acquisition, which are discussed in depth. The early SFR locomotion concepts are summarised, covering the initial trade-offs and discarded designs for higher traverse performance. Once a consolidated architecture was reached, the locomotion subsystem was developed further, defining the details of the suspension, actuators, deployment mechanisms and wheels. This technology is presented here in detail, including some key analysis and test results that support the design and demonstrate how it responds to the mission requirements. Another major electro-mechanical system developed as part of this work is the one dedicated to sample tube acquisition. The concept of operations of this machinery was defined to be robust against the unknown conditions that characterise the mission. The design process led to a highly automated robotic system which is described here in its main components: vision system, robotic arm and tube storage.
Resumo:
The study is divided into two main part: one focused on the GEO Satellite IoT and the other on the LEO Satellite IoT. Concerning the GEO Satellite IoT, the activity has been developed in the context of EUMETSAT Data Collection Service (DCS) by investigating the performance at the receiver within challenging scenarios. DCS are provided by several GEO Satellite operators, giving almost total coverage around the world. In this study firstly an overview of the DCS end-to-end architecture is given followed by a detailed description of both the tools used for the simulations: the DCP-TST (message generator and transmitter) and the DCP-RX (receiver). After generating several test messages, the performances have been evaluated with the addition of impairments (CW and sweeping interferences) and considerations in terms of BER and Good Messages are produced. Furthermore, a study on the PLL System is also conducted together with evaluations on the effectiveness of tuning the PLL Bw on the overall performance. Concerning the LEO Satellite IoT, the activity was carried out in the framework of the ASI Bidirectional IoT Satellite Service (BISS) Project. The elaborate covers a survey about the possible services that the project can accomplish and a technical analysis on the uplink MA. In particular, the LR-FHSS is proved to be a valid alternative for the uplink through an extensive analysis on its Network capacity and through the study of an analytic model for Success Probability with its Matlab implementation.
Resumo:
Linear cascade testing serves a fundamental role in the research, development, and design of turbomachines as it is a simple yet very effective way to compute the performance of a generic blade geometry. These kinds of experiments are usually carried out in specialized wind tunnel facilities. This thesis deals with the numerical characterization and subsequent partial redesign of the S-1/C Continuous High Speed Wind Tunnel of the Von Karman Institute for Fluid Dynamics. The current facility is powered by a 13-stage axial compressor that is not powerful enough to balance the energy loss experienced when testing low turning airfoils. In order to address this issue a performance assessment of the wind tunnel was performed under several flow regimes via numerical simulations. After that, a redesign proposal aimed at reducing the pressure loss was investigated. This consists of a linear cascade of turning blades to be placed downstream of the test section and designed specifically for the type of linear cascade being tested. An automatic design procedure was created taking as input parameters those measured at the outlet of the cascade. The parametrization method employed Bézier curves to produce an airfoil geometry that could be imported into a CAD software so that a cascade could be designed. The proposal was simulated via CFD analysis and proved to be effective in reducing pressure losses up to 41%. The same tool developed in this thesis could be adopted to design similar apparatuses and could also be optimized and specialized for the design of turbomachines components.
Resumo:
Nell'ambito della loro trasformazione digitale, molte organizzazioni stanno adottando nuove tecnologie per supportare lo sviluppo, l'implementazione e la gestione delle proprie architetture basate su microservizi negli ambienti cloud e tra i fornitori di cloud. In questo scenario, le service ed event mesh stanno emergendo come livelli infrastrutturali dinamici e configurabili che facilitano interazioni complesse e la gestione di applicazioni basate su microservizi e servizi cloud. L’obiettivo di questo lavoro è quello di analizzare soluzioni mesh open-source (istio, Linkerd, Apache EventMesh) dal punto di vista delle prestazioni, quando usate per gestire la comunicazione tra applicazioni a workflow basate su microservizi all’interno dell’ambiente cloud. A questo scopo è stato realizzato un sistema per eseguire il dislocamento di ognuno dei componenti all’interno di un cluster singolo e in un ambiente multi-cluster. La raccolta delle metriche e la loro sintesi è stata realizzata con un sistema personalizzato, compatibile con il formato dei dati di Prometheus. I test ci hanno permesso di valutare le prestazioni di ogni componente insieme alla sua efficacia. In generale, mentre si è potuta accertare la maturità delle implementazioni di service mesh testate, la soluzione di event mesh da noi usata è apparsa come una tecnologia ancora non matura, a causa di numerosi problemi di funzionamento.