1000 resultados para Anchors, Sea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annual cycle of nutrient-phytoplankton dynamics in Bohai Sea (BS) is simulated using a coupled physical-biological model in this study. By comparison, the modeled seasonal variations of nutrients and primary productivity agree with observations rather well. Although the annual cycles of chlorophyll a and primary production are both characterized by a double-peak configuration, a structural difference is still apparent: the phytoplankton biomass reaches the highest value in spring while summer is characterized by the most productivity in the BS, which can be ascribed to the combined impact of seawater temperature and zooplankton-grazing pressure on the growth of algae. Based on the validated simulations, the annual budgets of carbon, nitrogen and phosphorus are estimated, and are about 0.82 mt C surplus, 39 kt N deficit and 12kt P surplus, respectively, implying that the BS ecosystem is somewhat nitrogen limited. The contribution of two external nutrient sources, namely river discharges and resuspended sediments, to the growth of algae is also examined numerically, and it is found that the influence of river-borne nutrients mainly concentrates in estuaries, whereas the reduction of sediment-borne nutrients may significantly inhibit the onset of algae bloom in the whole BS. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, competition between buoyancy mechanisms and mixing dynamics largely determines the water column structure in a shelf sea. A three dimensional baroclinic ocean model forced by surface heat fluxes and the 2.5 order Mellor-Yamada turbulence scheme is used to simulate the annual cycle of the temperature in the Bohai Sea. The difference between the sea surface temperature (SST) and sea bottom temperature (SBT) is used to examine the evolution of its vertical stratification. It is found that the water column is well-mixed from October to March and that the seasonal thermocline appears in April, peaks in July and then weakens afterwards, closely following the heat budget. In addition, the Loder parameter based on the topography and tidal current amplitude is also computed in order to examine tidal fronts in the BS, which are evident in summer months when the wind stirring mechanism is weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct current observations in the Yellow Sea interior are very scarce due to intense fishing and trawling activities. Most previous studies on tides in the area were based on coastal measurements or satellite altimeter sea levels and have not been rigorously compared with direct measurements. In this paper, tidal currents are studied with current profiles from three bottom-moored Sontek Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea in summer of 2001 and 2003. The measured current series were dominated by tidal currents. Maximum velocities are between 40-80 cm/s at the mooring stations. M-2 current is the most dominant primary tidal constituent, while MS4 and M-4 are the most significant shallow water tides with much smaller amplitudes than the primary tides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of snow depth of Tibetan Plateau in the onset of South China Sea summer monsoon and the influence of ENSO on snow depth of Tibetan Plateau are investigated with use of data from ECMWF reanalysis and NCEP/NCAR reanalysis. The results are as follows: (1) The snow depth data from ECMWF reanalysis are tested and reliable, and can be used to study the influence of snow depth of Tibetan Plateau on the onset of South China Sea summer monsoon; (2) Anomaly of snow depth of Tibetan Plateau causes anomaly in air temperature and its contrast between the Indian Ocean and the continent resulting in easterly wind anomaly over 500 hPa and hence as well as in the atmospheric circulation in the lower layer. For the year of negative anomaly of snow depth a westerly wind anomaly with a cyclone pair takes place, while for positive anomaly of snow depth an easterly anomaly occurs with an anticyclone pair; (3) While positive anomaly of SST occurs in the eastern Pacific Ocean, positive anomaly of air pressure also takes place over the eastern Indian Ocean and the South China Sea, causing stronger meridional pressure gradient between the ocean and continent and then westerly wind anomaly. At the same time, the atmospheric pressure increases in the northern Tibetan Plateau, northerly wind gets stronger, and subtropical front strengthens. All of these are favorable for snowfall over Tibetan Plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyo, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1A degrees x1A degrees) for the warm pool heat content was determined with its center at 3A degrees N/138A degrees E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2A degrees N/137A degrees E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2A degrees N/137A degrees E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13A degrees S/74A degrees E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South China Sea (SCS) is one of the most active areas of internal waves. We undertook a program of physical oceanography in the northern South China Sea from June to July of 2009, and conducted a 1-day observation from 15:40 of June 24 to 16:40 of June 25 using a chain of instruments, including temperature sensors, pressure sensors and temperature-pressure meters at a site (117.5A degrees E, 21A degrees N) northeast of the Dongsha Islands. We measured fluctuating tidal and subtidal properties with the thermistor-chain and a ship-mounted Acoustic Doppler Current Profiler, and observed a large-amplitude nonlinear internal wave passing the site followed by a number of small ones. To further investigate this phenomenon, we collected the tidal constituents from the TPXO7.1 dataset to evaluate the tidal characteristics at and around the recording site, from which we knew that the amplitude of the nonlinear internal wave was about 120 m and the period about 20 min. The horizontal and vertical velocities induced by the soliton were approximately 2 m/s and 0.5 m/s, respectively. This soliton occurred 2-3 days after a spring tide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sectional velocity distribution of the East China Sea Kuroshio is one of the basic points in the study of the Kuroshio. Hydrographic temperature and salinity data at G-PN section in the East China Sea from June 1955 to November 2001 are collected and properly processed to calculate the geostrophic current using dynamic height method at the transect of the Kuroshio. After analysis of calculation results, the basic current structure of the Kuroshio in its main part is examined together with scalar estimate and characters of multi- core structure, and spacial-temporal variations of current cores' position. Main result shows that (1) single-core structure, double-core structure and multi-core structure are basic forms in axial part of the Kuroshio; (2) abvious temporal variations exist in current structure of the Kuroshio; (3) the current of structure of the Kuroshio has distinctly seasonal association. The number of current cores is on the high side of core numbers in average and multi-core stucture appears in fall mostly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared nonlinear principal component analysis (NLPCA) with linear principal component analysis (LPCA) with the data of sea surface wind anomalies (SWA), surface height anomalies (SSHA), and sea surface temperature anomalies (SSTA), taken in the South China Sea (SCS) between 1993 and 2003. The SCS monthly data for SWA, SSHA and SSTA (i.e., the anomalies with climatological seasonal cycle removed) were pre-filtered by LPCA, with only three leading modes retained. The first three modes of SWA, SSHA, and SSTA of LPCA explained 86%, 71%, and 94% of the total variance in the original data, respectively. Thus, the three associated time coefficient functions (TCFs) were used as the input data for NLPCA network. The NLPCA was made based on feed-forward neural network models. Compared with classical linear PCA, the first NLPCA mode could explain more variance than linear PCA for the above data. The nonlinearity of SWA and SSHA were stronger in most areas of the SCS. The first mode of the NLPCA on the SWA and SSHA accounted for 67.26% of the variance versus 54.7%, and 60.24% versus 50.43%, respectively for the first LPCA mode. Conversely, the nonlinear SSTA, localized in the northern SCS and southern continental shelf region, resulted in little improvement in the explanation of the variance for the first NLPCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12A degrees x1/12A degrees) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

11-year satellite altimeter sea surface height (SSH) anomaly data from January 1993 to December 2003 are used to present the dominant spatial patterns and temporal variations of the South China Sea (SCS) surface circulation through Empirical Orthogonal Function (EOF) analysis. The first three EOF modes show the obvious seasonal variations of SSH in the SCS. EOF mode one is generally characterized by a basin-wide circulation. Mode two describes the double-cell basin scale circulation structure. The two cells were located off west of the Luzon Island and southeast of Vietnam, respectively. EOF mode three presents the mesoscale eddy structure in the western SCS, which develops into a strong cyclonic eddy rapidly from July to September. EOF mode one and mode three are also embedded with interannual signals, indicating that the SCS surface circulation variation is influenced by El Nino events prominently. The strong El Nino of 1997/98 obviously changed the SCS circulation structure. This study also shows that there existed a series of mesoscale eddies in the western SCS, and their temporal variation indicates intra-seasonal and interannual signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large amplitude internal solitary waves (ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean. We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea (19A degrees 35'N, 112A degrees E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors, and an acoustic Doppler current profiler (ADCP). We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories. Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width. Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries (KdV) theory than the first-order KdV model. These results indicate that the northwestern South China Sea (SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River discharges are the important freshwater and nutrient sources for Bohai Sea (BS), and have a profound impact on the local marine environment. In this paper, the annual cycles of nutrient and phytoplankton dynamics in 1980s were reproduced using a coupled biogeochemical-physical model. Based on the validated simulations, the nutrient limitation characters were further investigated by running the model with the riverine nutrient altered, first enriching nitrogen and then phosphorus. It was found that although the riverine N:P ratios in Yellow and Haihe Rivers were much higher than the Redfield number, the nitrogen enrichment was still able to enhance the algae bloom in Laizhou and Bohai Bays. On the other hand, the response of algae growth to phosphorus enrichment was not thus obvious, which suggests that the local phytoplankton dynamics was characterized by the nitrogen limitation. Simulations also show that the nitrogen enrichment is generally accompanied by the phosphorus consumption, so a shift from nitrogen limitation to phosphorus limitation may occur if such a trend continues. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To discuss the intrusion of the Kuroshio into the SCS, we examined the mixing between the North Pacific and South China Sea (SCS) waters based on in-situ CTD data collected in August and September 2008 and the moored ADCP data taken from mid September 2008 to early July 2009. The CTD survey included four meridional sections from 119A degrees E to 122A degrees E around the Luzon Strait, during which pressure, temperature, and salinity were measured. The CTD data show that the isopycnal surface tilted from the SCS to the North Pacific; and it was steeper in the lower layers than in the upper ones. Meanwhile, we found strong vertical mixing taken place in the areas near 121A degrees E. The Kuroshio in high temperature and salinity intruded westward through Luzon Strait. The frequency of buoyancy was one order of magnitude greater than that of the common ones in the ocean, suggesting stronger stratification in the northeastern SCS. On the other hand, the long-term ADCP data show that before late October 2008, the direction of water flow in the SCS was eastward, and from November 2008 to late February 2009, it turned northwestward in the layers shallower than 150 m, while remained unchanged in deep layers from 200 to 450 m. From March to June 2009, the direction shifted with increasing depth from northward to southward, akin to the Ekman spiral. EOF analysis of the current time series revealed dominant empirical modes: the first mode corresponded to the mean current and showed that the Kuroshio intrusion occurred in the upper layers only from late December to early March. The temporal coefficient of the first and the second mode indicated clearly a dominant signal in a quasi-seasonal cycle.