968 resultados para Amino acid specificity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background We present a compendium of N-ethyl-N-nitrosourea (ENU)-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1) to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2) to assess the characteristics of these mutations; and 3) to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype. Findings In the context of an ENU mutagenesis program for C57BL/6J mice, a total of 185 phenotypes were tracked to mutations in 129 genes. In addition, 402 incidental mutations were identified and predicted to affect 390 genes. As previously reported, ENU shows strand asymmetry in its induction of mutations, particularly favoring T to A rather than A to T in the sense strand of coding regions and splice junctions. Some amino acid substitutions are far more likely to be damaging than others, and some are far more likely to be observed. Indeed, from among a total of 494 non-synonymous coding mutations, ENU was observed to create only 114 of the 182 possible amino acid substitutions that single base changes can achieve. Based on differences in overt null allele frequencies observed in phenotypic vs. non-phenotypic mutation sets, we infer that ENU-induced missense mutations create detectable phenotype only about 1 in 4.7 times. While the remaining mutations may not be functionally neutral, they are, on average, beneath the limits of detection of the phenotypic assays we applied. Conclusions Collectively, these mutations add to our understanding of the chemical specificity of ENU, the types of amino acid substitutions it creates, and its efficiency in causing phenovariance. Our data support the validity of computational algorithms for the prediction of damage caused by amino acid substitutions, and may lead to refined predictions as to whether specific amino acid changes are responsible for observed phenotypes. These data form the basis for closer in silico estimations of the number of genes mutated to a state of phenovariance by ENU within a population of G3 mice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aerosols are known to have important effects on climate, the atmosphere, and human health. The extent of those effects is unknown and largely depend on the interaction of aerosols with water in the atmosphere. Ambient aerosols are complex mixtures of both inorganic and organic compounds. The cloud condensation nuclei (CCN) activities, hygroscopic behavior and particle morphology of a monocarboxylic amino acid (leucine) and a dicarboxylic amino acid (glutamic acid) were investigated. Activation diameters at various supersaturation conditions were experimentally determined and compared with Köhler theoretical values. The theory accounts for both surface tension and the limited solubility of organic compounds. It was discovered that glutamic acid aerosols readily took on water both when relative humidity was less than 100% and when the supersaturation condition was reached, while leucine did not show any water activation at those conditions. Moreover, the study also suggests that Köhler theory describes CCN activity of organic compounds well when only surface tension of the compound is taken into account and complete solubility is assumed. Single parameter ¿ was also computed using both CCN data and hygroscopic growth factor (GF). The results of ¿ range from 0.17 to 0.53 using CCN data and 0.09 to 0.2 using GFs. Finally, the study suggests that during the water-evaporation/particle-nucleation process, crystallization from solution droplets takes place at different locations: for glutamic acid at the particles¿ center and leucine at the particles¿ boundary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Convulxin, a powerful platelet activator, was isolated from Crotalus durissus terrificus venom, and 20 amino acid N-terminal sequences of both subunits were determined. These indicated that convulxin belongs to the heterodimeric C-type lectin family. Neither antibodies against GPIb nor echicetin had any effect on convulxin-induced platelet aggregation showing that, in contrast to other venom C-type lectins acting on platelets, GPIb is not involved in convulxin-induced platelet activation. In addition, partially reduced/denatured convulxin only affects collagen-induced platelet aggregation. The mechanism of convulxin-induced platelet activation was examined by platelet aggregation, detection of time-dependent tyrosine phosphorylation of platelet proteins, and binding studies with 125I-convulxin. Convulxin induces signal transduction in part like collagen, involving the time-dependent tyrosine phosphorylation of Fc receptor gamma chain, phospholipase Cgamma2, p72(SYK), c-Cbl, and p36-38. However, unlike collagen, pp125(FAK) and some other bands are not tyrosine-phosphorylated. Convulxin binds to a glycosylated 62-kDa membrane component in platelet lysate and to p62/GPVI immunoprecipitated by human anti-p62/GPVI antibodies. Convulxin subunits inhibit both aggregation and tyrosine phosphorylation in response to collagen. Piceatannol, a tyrosine kinase inhibitor with some specificity for p72(SYK), showed differential effects on collagen and convulxin-stimulated signaling. These results suggest that convulxin uses the p62/GPVI but not the alpha2beta1 part of the collagen signaling pathways to activate platelets. Occupation and clustering of p62/GPVI may activate Src family kinases phosphorylating Fc receptor gamma chain and, by a mechanism previously described in T- and B-cells, activate p72(SYK) that is critical for downstream activation of platelets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: We aimed at designing and developing a novel bombesin analogue, DOTA-PEG(4)-BN(7-14) (DOTA-PESIN), with the goal of labelling it with (67/68)Ga and (177)Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. METHODS: The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG(4)). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. RESULTS: [Ga(III)/Lu(III)]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [(67)Ga/(177)Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [(67)Ga/(177)Lu]-DOTA-PESIN. [(67)Ga/(177)Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [(68)Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the (177)Lu-labelled peptide remained in the tumour even 3 days post injection. CONCLUSION: The newly designed ligands have high potential with regard to PET and SPECT imaging with (68/67)Ga and targeted radionuclide therapy with (177)Lu.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation. In this study we reveal differential novel effects of five beta2-subunits isoforms expressed in human heart (beta(2a-e)) on the single L-type calcium channel current. These splice variants differ only by amino-terminal length and amino acid composition. Single-channel modulation by beta2-subunit isoforms was investigated in HEK293 cells expressing the recombinant L-type ion conducting pore. All beta2-subunits increased open probability, availability, and peak current with a highly consistent rank order (beta2a approximately = beta2b > beta2e approximately = beta2c > beta2d). We show graded modulation of some transition rates within and between deep-closed and inactivated states. The extent of modulation correlates strongly with the length of amino-terminal domains. Two mutant beta2-subunits that imitate the natural span related to length confirm this conclusion. The data show that the length of amino termini is a relevant physiological mechanism for channel closure and inactivation, and that natural alternative splicing exploits this principle for modulation of the gating properties of calcium channels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides and sometimes Simulium spp. The aim of this investigation was to identify Simulium allergens associated with IBH. A phage surface display cDNA library expressing recombinant Simulium vittatum salivary gland proteins was screened using sera of IBH-affected horses sensitized to S. vittatum salivary gland proteins as shown in immunoblot, resulting in the identification of seven cDNAs encoding IgE-binding proteins. The deduced amino acid sequences of these proteins showed sequence similarities to antigen 5 like protein (Sim v 1), to a serine protease inhibitor (Sim v 2), to two alpha-amylases (Sim v 3 and Sim v 4), and to three S. vittatum erythema proteins (SVEPs). The cDNA inserts were subcloned and expressed as [His](6)-tagged protein in Escherichia coli and purified using Ni(2+)-chelate affinity chromatography. Mice were immunised with the seven recombinant proteins and the antibodies tested against the recombinant proteins and salivary gland extract (SGE) of S. vittatum and Culicoides nubeculosus in immunoblot analyses. r-Sim v 1 specific mouse Abs recognized a band of about 32 kDa in immunoblots of both S. vittatum and C. nubeculosus SGE, detectable also by serum IgE of IBH-affected horses. Preincubation of horse serum with r-Sim v 1 completely inhibited IgE binding to the 32 kDa band demonstrating the presence of cross-reactive antigen 5 like proteins in both SGE. Determination of IgE levels against the r-Sim v proteins and crude S. vittatum extract by ELISA in sera from 25 IBH-affected and 20 control horses showed that IBH-affected horses had significantly higher IgE levels than controls against r-Sim v 1, 2, 3, 4 and S. vittatum extract, whereas the r-SVEP showed only marginal IgE binding. Further analyses showed that 60% of IBH-affected horses reacted to r-Sim v 1, suggesting that this could be a major allergen for IBH. Forty to twenty percent of the IBH-affected horses reacted with r-Sim v 2, 3 or 4. Combination of the results obtained with the 4 r-Sim v proteins showed that 92% of the IBH-affected but only 15% of the healthy horses had IgE levels against one or more of the 4 r-Sim v proteins. Seventy percent of the healthy horses had detectable IgE against S. vittatum extract, indicating a low specificity of the detection system used. Optimization of the ELISA system will be required to determine reliable cut-off values for the IBH-related allergens. Their in vivo relevance needs to be carefully assessed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug-drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V(max) for S-/and R-norketamine formation was 0.49 and 0.45nmol/h/mg cellular protein and K(m) was 3.41 and 2.66μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC(50) of 5.63 and 6.26μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP enzyme involved in ketamine and norketamine metabolism, thus confirming results from inhibition studies with horse liver microsomes. Clopidogrel seems to be a feasible inhibitor for equine CYP2B6. The specificity still needs to be established with other single equine CYPs. Heterologous expression of single equine CYP enzymes opens new possibilities to substantially improve the understanding of drug metabolism and drug interactions in horses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The single-celled protozoan Trypanosoma brucei spp. is the causative agent of human African trypanosomiasis and nagana in cattle. Quantitative proteomics for the first time allowed for the characterization of the proteome from several different life stages of the parasite (1-3). To achieve this, stable isotope labeling by amino acids in cell culture (SILAC; (4)) was adapted to T. brucei spp. cultures. T. brucei cells grown in standard media with dialyzed fetal calf serum containing heavy isotope-labeled amino acids (arginine and lysine) show efficient incorporation of the labeled amino acids into the whole cell proteome (8-12 divisions) and no detectable amino acid conversions. The method can be applied to both of the major life stages of the parasite and in combination with RNAi or gene knock-out approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clearance of allergic inflammatory cells from the lung through matrix metalloproteinases (MMPs) is necessary to prevent lethal asphyxiation, but mechanistic insight into this essential homeostatic process is lacking. In this study, we have used a proteomics approach to determine how MMPs promote egression of lung inflammatory cells through the airway. MMP2- and MMP9-dependent cleavage of individual Th2 chemokines modulated their chemotactic activity; however, the net effect of complementing bronchoalveolar lavage fluid of allergen-challenged MMP2(-/-)/MMP9(-/-) mice with active MMP2 and MMP9 was to markedly enhance its overall chemotactic activity. In the bronchoalveolar fluid of MMP2(-/-)/MMP9(-/-) allergic mice, we identified several chemotactic molecules that possessed putative MMP2 and MMP9 cleavage sites and were present as higher molecular mass species. In vitro cleavage assays and mass spectroscopy confirmed that three of the identified proteins, Ym1, S100A8, and S100A9, were substrates of MMP2, MMP9, or both. Function-blocking Abs to S100 proteins significantly altered allergic inflammatory cell migration into the alveolar space. Thus, an important effect of MMPs is to differentially modify chemotactic bioactivity through proteolytic processing of proteins present in the airway. These findings provide a molecular mechanism to explain the enhanced clearance of lung inflammatory cells through the airway and reveal a novel approach to target new therapies for asthma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MEF2 is a $\underline{\rm m}$yocyte-specific $\underline{\rm e}$nhancer-binding $\underline{\rm f}$actor that binds a conserved DNA sequence, CTA(A/T)$\sb4$TAG. A MEF2 binding site in the XMyoDa promoter overlaps with the TATA box and is required for muscle specific expression. To examine the potential role of MEF2 in the regulation of MyoD transcription during early development, the appearance of MEF2 binding activity in developing Xenopus embryos was analyzed with the electrophoretic mobility shift assay. Two genes were isolated from a X. Laevis stage 24 cDNA library that encode factors that bind the XMyoDa TFIID/MEF2 site. Both genes are highly homologous to each other, belong to the MADS ($\underline{\rm M}$CM1-$\underline{\rm A}$rg80-agamous-$\underline{\rm d}$eficiens-$\underline{\rm S}$RF) protein family, and most highly related to the mammalian MEF2A gene, hence they are designated as XMEF2A1 and XMEF2A2. Proteins encoded by both cDNAs form specific complexes with the MEF2 binding site and show the same binding specificity as the endogenous MEF2 binding activity. XMEF2A transcripts accumulate preferentially in developing somites after the appearance of XMyoD transcripts. XMEF2 protein begins to accumulate in somites at tailbud stages. Transcriptional activation of XMyoD promoter by XMEF2A required only the MADS box and MEF2-specific domain when XMEF2A is bound at the TATA box. However, a different downstream transactivation domain was required when XMEF2A activates transcription through binding to multiple upstream sites. These results suggest that different activation mechanisms are involved, depending on where the factor is bound. Mutations in several basic amino acid clusters in the MADS box inhibit DNA binding suggesting these amino acids are essential for DNA binding. Mutation of Thr-20 and Ser-36 to the negatively charged amino acid residue, aspartic acid, abolish DNA binding. XMEF2A activity may be regulated by phosphorylation of these amino acids. A dominant negative mutant was made by mutating one of the basic amino acid clusters and deleting the downstream transactivation domain. In vivo roles of MEF2 in the regulation of MyoD transcription were investigated by overexpression of wild type MEF2 and dominant negative mutant of XMEF2A in animal caps and assaying for the effects on the level of expression of MyoD genes. Overexpression of MEF2 activates the transcription of endogenous MyoD gene family while expression of a dominant negative mutant reduces the level of transcription of XMRF4 and myogenin genes. These results suggest that MEF2 is downstream of MyoD and Myf5 and that MEF2 is involved in maintaining and amplifying expression of MyoD and Myf5. MEF2 is upstream of MRF4 and myogenin and plays a role in activating their expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoids such as all-trans-retinoic acid (ATRA) are promising agents for cancer chemoprevention and therapy. ATRA can cause growth inhibition, induction of differentiation and apoptosis of a variety of cancer cells. These effects are thought to be mediated by nuclear retinoids receptors which are involved in ligand-dependent transcriptional activation of downstream target genes. Using differential display, we identified several retinoic acid responsive genes in the head and neck squamous carcinoma cells and lung cancer cells, including tissue type transglutaminase, cytochrome P450-related retinoic acid hydroxylase, and a novel gene, designated RAIG1. RAIG1 has two transcripts of 2.4 and 6.8 kbp, respectively, that are generated by alternative selection of polyadenylation sites. Both transcripts have the same open reading frame that encodes a protein comprised of 357 amino acid residues. The deduced RAIG1 protein sequence contains seven transmembrane domains, a signature structure of G protein-coupled receptors. RAIG1 mRNA is expressed at high level in fetal and adult lung tissues. Induction of RAIG1 expression by ATRA is rapid and dose-dependent. A fusion protein of RAIG1 and the green fluorescent protein was localized in the cell surface membrane and perinuclear vesicles in transiently transfected cells. The locus for RAIG1 gene was mapped to a region between D12S358 and D12S847 on chromosome 12p12.3-p13. Our study of the novel retinoic acid induced gene RAIG1 provide evidence for a possible interaction between retinoid and G protein signaling pathways.^ We further examined RAIG1 expression pattern in a panel of 84 cancer cell lines of different origin. The expression level varies greatly from very high to non-detectable. We selected a panel of different cancer cells to study the effects of retinoids and other differentiation agents. We observed: (1) In most cases, retinoids (including all-trans retinoic acid, 4HPR, CD437) could induce the expression of RAIG-1 in cells from cancers of the breast, colon, head and neck, lung, ovarian and prostate. (2) Compare to retinoids, butyrate is often a more potent inducer of RAIG-1 expression in many cancer cells. (3) Butyrate, Phenylacetate butyrate, (R)P-Butyrate and (S)P-Butyrate have different impact on RAIG1 expression which varies among different cell lines. Our results indicate that retinoids could restore RAIG1 expression that is down-regulated in many cancer cells.^ A mouse homologous gene, mRAIG1, was cloned by 5$\sp\prime$ RACE reaction. mRAIG1 cDNA has 2105 bp and shares 63% identity with RAIG1 cDNA. mRAIG1 encodes a polypeptide of 356 amino acid which is 76% identity with RAIG1 protein. mRAIG1 protein also has seven transmembrane domains which are structurally identical to those of RAIG1 protein. Only one 2.2 kbp mRAIG1 transcript could be detected. The mRAIG1 mRNA is also highly expressed in lung tissue. The expression of mRAIG1 gene could be induced by ATRA in several mouse embryonal carcinoma cells. The induction of mRAIG1 expression is associated with retinoic acid-induced neuroectoderm differentiation of P19 cells. Similarity in cDNA and protein sequence, secondary structure, tissue distribution and inducible expression by retinoic acid strongly suggest that the mouse gene is the homologue of the human RAIG1 gene. ^