941 resultados para Alternative solar collector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost solar drier was constructed using locally available materials. The size of the drier was 20x3.6x3 having drying capacity of 80 kg of SIS (w/w). Optimization of moisture content was observed for mola, dhela, chapila, chanda and puti at temperature ranges between 40-45°C and 50-55°C in solar tunnel drier. There was little or no change in moisture content at temperature below 40°C during the first 3 hours. Then the moisture content declined gradually with the increase of drying period. On the other hand, at temperature between 50-55°C, moisture content started to decline after 2 hours of drying. The moisture content of the sample reached at about 16% after 26 hours of sun drying at 40-45°C and 20 hours at 50-55°C. The optimum temperature for producing high quality dried products was 45-50°C in solar tunnel drier. The temperature and relative humidity outside and inside the dryers (with fish) at various locations were recorded from 8.00am to 4.00pm. The normal atmospheric ambient temperature was recorded in the range of 25-37°C from at 8:00am to 4:00pm. During the same period the atmospheric relative humidity recorded was in the range of 30-58%. On the other hand, the maximum temperature inside the dryers was recorded in the range of 28-65°C. The lowest temperature recorded was 28°C in the morning and at 13.00pm the highest temperature 65°C was recorded. The maximum relative humidity 58% found in the afternoon and minimum of 28% at noon. There was inverse relationship between temperature intensity of sunshine and humidity which decreased as sunshine increased. In total, it took around 26 hours of drying to reduce the moisture level to about 16%.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic types of hybrid PV/thermal solar system and their performance were analyzed comparatively. The research method and recent developments of PV/T system were described. This paper gave some examples of PV/T products and demonstration project. Finally, some main problems, which should be solved in R&D of PV/T system, were presented and the outlook of PV/T technology was briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the sustainability of two different approaches to upgrade water and sanitation infrastructure in Kenya’s largest informal settlement, Kibera. A background to the urbanization of poverty is outlined along with approaches to urban slums. Two case-studies of completed interventions of infrastructure upgrading have been investigated. In one case-study, the upgrading method driven by an NGO uses an integrated livelihoods and partnership technique at community level to create an individual project. in the other case-study, the method is a collaboration between the government and a multi-lateral agency to deliver upgraded services as a part of a country-wide programme. The ‘bottom-up’ (project) and ‘top-down’ (programme) approaches each seek sustainability and aim to achieve this in the same context using different techniques. This paper investigates the sustainability of each approach. The merits and challenges of the approaches are discussed with the projected future of Kibera. The paper highlights the valuable opportunity for the role of appropriate engineering infrastructure for sustainable urban development, as well as the alleviation of poverty in a developing context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A voltage sensing buck converter-based technique for maximum solar power delivery to a load is presented. While retaining the features and advantages of the incremental conductance algorithm, this technique is more desirable because of single sensor use. The technique operates by maximising power at the buck converter output instead of the input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2 photoanode electrodes for solar cell application. Photovoltaic measurements showed that TiO 2 solar cell with pure anatase crystal structure had higher power conversion efficiency (PCE) than that made of pure rutile-TiO 2. However, the PCE of solar cells depends on the anatase to rutile weight ratio, reaching a maximum at a specific value due to the synergic effect between anatase and rutile TiO 2 nanoparticles. Moreover, it was found that the PCE of solar cells made of crystalline TiO 2 powders was much higher, increasing in the range 32-84% depending on anatase to rutile weight ratio, than that of prepared by amorphous powders. TiO 2 solar cell with the morphology of mixtures of nanoparticles and microparticles had higher PCE than the solar cell with the same phase composition containing TiO 2 nanoparticles due to the role of TiO 2 microparticles as light scattering particles. The presented strategy would open up new insight into fabrication and structural design of low-cost TiO 2 solar cells with high power conversion efficiency. © 2012 Elsevier Ltd.