925 resultados para Algorithm clustering
Resumo:
The objective of the work was to develop a non-invasive methodology for image acquisition, processing and nonlinear trajectory analysis of the collective fish response to a stochastic event. Object detection and motion estimation were performed by an optical flow algorithm in order to detect moving fish and simultaneously eliminate background, noise and artifacts. The Entropy and the Fractal Dimension (FD) of the trajectory followed by the centroids of the groups of fish were calculated using Shannon and permutation Entropy and the Katz, Higuchi and Katz-Castiglioni's FD algorithms respectively. The methodology was tested on three case groups of European sea bass (Dicentrarchus labrax), two of which were similar (C1 control and C2 tagged fish) and very different from the third (C3, tagged fish submerged in methylmercury contaminated water). The results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive algorithms and proved to be promising tools for the non-invasive identification and quantification of differences in fish responses. In conclusion, we believe that this methodology has the potential to be embedded in online/real time architecture for contaminant monitoring programs in the aquaculture industry.
Resumo:
This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.
Resumo:
This document aims to describe an update of the implementation of the J48Consolidated class within WEKA platform. The J48Consolidated class implements the CTC algorithm [2][3] which builds a unique decision tree based on a set of samples. The J48Consolidated class extends WEKA’s J48 class which implements the well-known C4.5 algorithm. This implementation was described in the technical report "J48Consolidated: An implementation of CTC algorithm for WEKA". The main, but not only, change in this update is the integration of the notion of coverage in order to determine the number of samples to be generated to build a consolidated tree. We define coverage as the percentage of examples of the training sample present in –or covered by– the set of generated subsamples. So, depending on the type of samples that we use, we will need more or less samples in order to achieve a specific value of coverage.
Resumo:
The CTC algorithm, Consolidated Tree Construction algorithm, is a machine learning paradigm that was designed to solve a class imbalance problem, a fraud detection problem in the area of car insurance [1] where, besides, an explanation about the classification made was required. The algorithm is based on a decision tree construction algorithm, in this case the well-known C4.5, but it extracts knowledge from data using a set of samples instead of a single one as C4.5 does. In contrast to other methodologies based on several samples to build a classifier, such as bagging, the CTC builds a single tree and as a consequence, it obtains comprehensible classifiers. The main motivation of this implementation is to make public and available an implementation of the CTC algorithm. With this purpose we have implemented the algorithm within the well-known WEKA data mining environment http://www.cs.waikato.ac.nz/ml/weka/). WEKA is an open source project that contains a collection of machine learning algorithms written in Java for data mining tasks. J48 is the implementation of C4.5 algorithm within the WEKA package. We called J48Consolidated to the implementation of CTC algorithm based on the J48 Java class.