858 resultados para Alcoholics anonymous groups


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The present study offers a novel methodological contribution to the study of the configuration and dynamics of research groups, through a comparative perspective of the projects funded (inputs) and publication co-authorships (output). Method: A combination of bibliometric techniques and social network analysis was applied to a case study: the Departmento de Bibliotecología (DHUBI), Universidad Nacional de La Plata, Argentina, for the period 2000-2009. The results were interpreted statistically and staff members of the department, were interviewed. Results: The method makes it possible to distinguish groups, identify their members and reflect group make-up through an analytical strategy that involves the categorization of actors and the interdisciplinary and national or international projection of the networks that they configure. The integration of these two aspects (input and output) at different points in time over the analyzed period leads to inferences about group profiles and the roles of actors. Conclusions: The methodology presented is conducive to micro-level interpretations in a given area of study, regarding individual researchers or research groups. Because the comparative input-output analysis broadens the base of information and makes it possible to follow up, over time, individual and group trends, it may prove very useful for the management, promotion and evaluation of science

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment at 9 stations in the North Atlantic, from the Iceland Basin in the East to the Labrador Sea in the West. The data were sampled along vertical profiles by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA) and a fluorescence sensor (F, ECO Puck chlorophyll a fluorometer, WET Labs Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10(body volume) increments, see Edvardsen et al. (2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). Fluorescence was roughly converted into chlorophyll based on filtered chlorophyll values obtained from station 10 in the Labrador Sea. Due to the low number of filtered samples that was used for the conversion the resulting chlorophyll values should be considered with care. CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column, see Herman et al., (2004, doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first data set contains the mean and cofficient of variation (standard deviation divided by mean) of a multi-frequency indicator I derived from ER60 acoustic information collected at five frequencies (18, 38, 70, 120, and 200 kHz) in the Bay of Biscay in May of the years 2006, 2008, 2009 and 2010 (Pelgas surveys). The multi-frequency indicator was first calculated per voxel (20 m long × 5 m deep sampling unit) and then averaged on a spatial grid (approx. 20 nm × 20 nm) for five 5-m depth layers in the surface waters (10-15m, 15-20m, 20-25m, 25-30m below sea surface); there are missing values in particular in the shallowest layer. The second data set provides for each grid cell and depth layer the proportion of voxels for which the multi-frequency indicator I was indicative of a certain group of organisms. For this the following interpretation was used: I < 0.39 swim bladder fish or large gas bubbles, I = 0.39-0.58 small resonant bubbles present in gas bearing organisms such as larval fish and phytoplankton, I = 0.7-0.8 fluidlike zooplankton such as copepods and euphausiids, and I > 0.8 mackerel. These proportions can be interpreted as a relative abundance index for each of the four organism groups.