934 resultados para Air pollution control industry.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flexible, mass-conservative numerical technique for solving the advection-dispersion equation for miscible contaminant transport is presented. The method combines features of puff transport models from air pollution studies with features from the random walk particle method used in water resources studies, providing a deterministic time-marching algorithm which is independent of the grid Peclet number and scales from one to higher dimensions simply. The concentration field is discretised into a number of particles, each of which is treated as a point release which advects and disperses over the time interval. The dispersed puff is itself discretised into a spatial distribution of particles whose masses can be pre-calculated. Concentration within the simulation domain is then calculated from the mass distribution as an average over some small volume. Comparison with analytical solutions for a one-dimensional fixed-duration concentration pulse and for two-dimensional transport in an axisymmetric flow field indicate that the algorithm performs well. For a given level of accuracy the new method has lower computation times than the random walk particle method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionic nature of ionic liquids (ILs) results in a unique combination of intrinsic properties that produces increasing interest in the research of these fluids as environmentally friendly "neoteric" solvents. One of the main research fields is their exploitation as solvents for liquid-liquid extractions, but although ILs cannot vaporize leading to air pollution, they present non-negligible miscibility with water that may be the cause of some environmental aquatic risks. It is thus important to know the mutual solubilities between ILs and water before their industrial applications. In this work, the mutual solubilities of hydrophobic yet hygroscopic imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ILs in combination with the anions bis(trifluoromethylsulfonyl)imide, hexafluorophosphate, and tricyanomethane with water were measured between 288.15 and 318.15 K. The effect of the ILs structural combinations, as well as the influence of several factors, namely cation side alkyl chain length, the number of cation substitutions, the cation family, and the anion identity in these mutual solubilities are analyzed and discussed. The hydrophobicity of the anions increases in the order [C(CN)3] <[PF6] <[Tf2N] while the hydrophobicity of the cations increases from [Cnmim] <[Cnmpy] [Cnmpyr] <[Cnmpip] and with the alkyl chain length increase. From experimental measurements of the temperature dependence of ionic liquid solubilities in water, the thermodynamic molar functions of solution, such as Gibbs energy, enthalpy, and entropy at infinite dilution were determined, showing that the solubility of these ILs in water is entropically driven and that the anion solvation at the IL-rich phase controls their solubilities in water. The COSMO-RS, a predictive method based on unimolecular quantum chemistry calculations, was also evaluated for the description of the water-IL binary systems studied, where it showed to be capable of providing an acceptable qualitative agreement with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids (ILs) have recently garnered increased attention because of their potential environmental benefits as "green" replacements over conventional volatile organic solvents. While ILs cannot significantly volatilize and contribute to air pollution, even the most hydrophobic ones present some miscibility with water posing environmental risks to the aquatic ecosystems. Thus, the knowledge of ILs toxicity and their water solubility must be assessed before an accurate judgment of their environmental benefits and prior to their industrial applications. In this work, the mutual solubilities for [C2-C8mim][Tf2N] (n-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and water between 288.15 and 318.15 K at atmospheric pressure were measured. Although these are among the most hydrophobic ionic liquids known, the solubility of water in these compounds is surprisingly large, ranging from 0.17 to 0.36 in mole fraction, while the solubility of these ILs in water is much lower ranging from 3.2 × 10-5 to 1.1 × 10-3 in mole fraction, in the temperature and pressure conditions studied. From the experimental data, the molar thermodynamic functions of solution and solvation such as Gibbs energy, enthalpy, and entropy at infinite dilution were estimated, showing that the solubility of these ILs in water is entropically driven. The predictive capability of COSMO-RS, a model based on unimolecular quantum chemistry calculations, was evaluated for the description of the binary systems investigated providing an acceptable agreement between the model predictions and the experimental data both with the temperature dependence and with the ILs structural variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids are organic salts with low melting points. Many of these compounds are liquid at room temperature in their pure state. Since they have negligible vapor pressure and would not contribute to air pollution, they are being intensively investigated for a variety of applications, including as solvents for reactions and separations, as non-volatile electrolytes, and as heat transfer fluids. We present melting temperatures, glass transition temperatures, decomposition temperatures, heat capacities, and viscosities for a large series of pyridinium-based ionic liquids. For comparison, we include data for several imidazolium and quaternary ammonium salts. Many of the compounds do not crystallize, but form glasses at temperatures between 188 K and 223 K. The thermal stability is largely determined by the coordinating ability of the anion, with ionic liquids made with the least coordinating anions, like bis(trifluoromethylsulfonyl)imide, having the best thermal stability. In particular, dimethylaminopyridinium bis(trifluoromethylsulfonyl)imide salts have some of the best thermal stabilities of any ionic liquid compounds investigated to date. Heat capacities increase approximately linearly with increasing molar mass, which corresponds with increasing numbers of translational, vibrational, and rotational modes. Viscosities generally increase with increasing number and length of alkyl substituents on the cation, with the pyridinium salts typically being slightly more viscous than the equivalent imidazolium compounds. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composition and richness of the microfauna on lime trees was surveyed in relation to the distribution and cover of lichens in Belfast. Parameters used to help interpret the results included distance from the city centre and available data on air quality. The percentage epiphyte cover on the trunks of lime trees was significantly correlated with distance from the city centre whereas that on tree bases as not. In contrast, the number of microfaunal species revealed strong positive correlations with distance for both the bases and the trunks of trees. Most of this increase in microfaunal species richness towards rural areas was due to protistans which are thus proposed as useful bioindicators of air pollution. The total species richness of fauna showed slight negative correlation with smoke but not SO2 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable development comprises of three dimensions. The three dimensions are the environment, the social and the economic. There have been many indicators used to measure the three dimensions of sustainability. For example air pollution, consumption of natural resources, quality of open space, noise, equity and opportunities and economic benefits from transport and land use. Urban areas constitute the most crucial factor in the sustainability. Urban systems affect and are affected by natural systems beyond their physical boundaries and in general the interdependence between the urban system and the regional and global environment is not reflected in urban decision making. The use of energy in the urban system constitutes the major element in the construction and function of urban areas. Energy impacts across the boundaries of the three dimensions of sustainability. The objective of this research is to apply energy-use-indicators to the urban system as a measure of sustainability. This methodology is applied to a case study in the United Kingdom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constructed wetland at Greenmount College, Co. Antrim, N. Ireland was built in 2004 to study the treatment of ‘dirty water’ effluent from the Greenmount dairy unit. The effluent has a mean BOD5 of c.1000 mg/L and contains milking parlour wash-water and runoff from silage clamps and yard areas lightly contaminated with cattle manure. The nominal water retention time of this wetland is 100 days. The primary purposes of the wetland are to eliminate organic pollution and eutrophication risk from nitrogen and phosphorus compounds. However the wetland should also effectively remove any zoonotic pathogens present in manure and milk. Accordingly, a 12-month microbiological survey of water in the five ponds of the wetland commenced in August 2007. The aims of the survey are to determine changes, as effluent passes through the wetland system, in a broad range of indicator organisms (faecal coliforms, Escherichia coli, Enterococcus faecalis and Clostridium perfringens) and the occurrence of several pathogens - Salmonella, Campylobacter, Cryptosporidium and Mycobacterium avium subsp. paratuberculosis (Map). The highest indicator organism counts - E. coli and faecal coliforms, 103-104 CFU/ml - are observed in pond 1, and a significant reduction (1-3 log10) in all indicator organisms occurs as water passes through the wetland from pond 1 to pond 5. Hence the wetland is efficient at reducing levels of indicator organisms in the dairy effluent. Salmonella and Campylobacter spp. are being detected intermittently in all the ponds, whilst Cryptosporidium and Map have yet to be detected, and so the ability of the wetland to reduce/eliminate specific pathogens is less clear at present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles are a key prospect for future transportation. A large penetration of electric vehicles has the potential to reduce the global fossil fuel consumption and hence the greenhouse gas emissions and air pollution. However, the additional stochastic loads imposed by plug-in electric vehicles will possibly introduce significant changes to existing load profiles. In his paper, electric vehicles loads are integrated into an 5-unit system using a non-convex dynamic dispatch model. The actual infrastructure characteristics including valve-point effects, load balance constrains and transmission loss have been included in the model. Multiple load profiles are comparatively studied and compared in terms of economic and environmental impacts in order o identify patterns to charge properly. The study as expected shows ha off-peak charging is the best scenario with respect to using less fuels and producing less emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.