897 resultados para Agricultural Irrigation.
Resumo:
This chapter explores some of the implications of adopting a research approach that focuses on people and their livelihoods in the rice-wheat system of the Indo-Gangetic Plains. We draw on information from a study undertaken by the authors in Bangladesh and then consider the transferability of our findings to other situations. We conclude that if our research is to bridge the researcher-farmer interface, ongoing technical research must be supported by research that explores how institutional, policy, and communication strategies determine livelihood outcomes. The challenge that now faces researchers is to move beyond their involvement in participatory research to understand how to facilitate a process in which they provide information and products for others to test. Building capacity at various levels for openness in sharing information and products–seeing research as a public good for all–seems to be a prerequisite for more effective dissemination of the available information and technologies.
Resumo:
Developing models to predict the effects of social and economic change on agricultural landscapes is an important challenge. Model development often involves making decisions about which aspects of the system require detailed description and which are reasonably insensitive to the assumptions. However, important components of the system are often left out because parameter estimates are unavailable. In particular, measurements of the relative influence of different objectives, such as risk, environmental management, on farmer decision making, have proven difficult to quantify. We describe a model that can make predictions of land use on the basis of profit alone or with the inclusion of explicit additional objectives. Importantly, our model is specifically designed to use parameter estimates for additional objectives obtained via farmer interviews. By statistically comparing the outputs of this model with a large farm-level land-use data set, we show that cropping patterns in the United Kingdom contain a significant contribution from farmer’s preference for objectives other than profit. In particular, we found that risk aversion had an effect on the accuracy of model predictions, whereas preference for a particular number of crops grown was less important. While nonprofit objectives have frequently been identified as factors in farmers’ decision making, our results take this analysis further by demonstrating the relationship between these preferences and actual cropping patterns.
Resumo:
The process of global deforestation calls for urgent attention, particularly in South America where deforestation rates have failed to decline over the past 20 years. The main direct cause of deforestation is land conversion to agriculture. We combine data from the FAO and the World Bank for six tropical Southern American countries over the period 1970–2006, estimate a panel data model accounting for various determinants of agricultural land expansion and derive elasticities to quantify the effect of the different independent variables. We investigate whether agricultural intensification, in conjunction with governance factors, has been promoting agricultural expansion, leading to a ‘‘Jevons paradox’’. The paradox occurs if an increase in the productivity of one factor (here agricultural land) leads to its increased, rather than decreased, utilization. We find that for high values of our governance indicators a Jevons paradox exists even for moderate levels of agricultural productivity, leading to an overall expansion of agricultural area. Agricultural expansion is also positively related to the level of service on external debt and population growth, while its association with agricultural exports is only moderate. Finally, we find no evidence of an environmental Kuznets curve, as agricultural area is ultimately positively correlated to per-capita income levels.
Resumo:
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to 2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by 1 K); however, maximum temperatures increased by 2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.
Resumo:
We review the decision by the European Commission in the case of the UK Agricultural Registration Exchange. We propose a theoretical model, offering a basis for some of the intuitive arguments used by the Commission on the anti-competitive role of information exchange in the case of price and non price collusion. Market transparency on non price data is shown to be a collusion facilitating device which may achieve stability in otherwise unstable cartels.
Resumo:
The purpose of this chapter is to review the academic literature that has contributed to the debate on the European Union’s (EU’s) common agricultural policy (CAP), and the close links between the CAP and the process of economic integration.
Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe
Resumo:
Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.