858 resultados para Adaptive Melanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing negotiation agents are primitive in terms of what they can learn and how responsive they are towards the changing negotiation contexts. These weaknesses can be alleviated if an expressive representation language is used to represent negotiation contexts and a sound inference mechanism is applied to reason about the preferential changes arising in these negotiation contexts. This paper illustrates a novel adaptive negotiation agent model, which is underpinned by the well-known AGM belief revision logic. Our preliminary experiments show that the performance of the belief-based adaptive negotiation agents is promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.