989 resultados para Adaptive Image Binarization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering schemes improve energy efficiency of wireless sensor networks. The inclusion of mobility as a new criterion for the cluster creation and maintenance adds new challenges for these clustering schemes. Cluster formation and cluster head selection is done on a stochastic basis for most of the algorithms. In this paper we introduce a cluster formation and routing algorithm based on a mobility factor. The proposed algorithm is compared with LEACH-M protocol based on metrics viz. number of cluster head transitions, average residual energy, number of alive nodes and number of messages lost

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation and finding the corner density in each partition. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). Euclidean distance measure is used for computing the distance between the features of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a region based image retrieval system using the local colour and texture features of image sub regions. The regions of interest (ROI) are roughly identified by segmenting the image into fixed partitions, finding the edge map and applying morphological dilation. The colour and texture features of the ROIs are computed from the histograms of the quantized HSV colour space and Gray Level co- occurrence matrix (GLCM) respectively. Each ROI of the query image is compared with same number of ROIs of the target image that are arranged in the descending order of white pixel density in the regions, using Euclidean distance measure for similarity computation. Preliminary experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding, morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. A combined colour and texture feature vector is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, different techniques for image analysis of high density microarrays have been investigated. Most of the existing image analysis techniques require prior knowledge of image specific parameters and direct user intervention for microarray image quantification. The objective of this research work was to develop of a fully automated image analysis method capable of accurately quantifying the intensity information from high density microarrays images. The method should be robust against noise and contaminations that commonly occur in different stages of microarray development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speckle noise formed as a result of the coherent nature of ultrasound imaging affects the lesion detectability. We have proposed a new weighted linear filtering approach using Local Binary Patterns (LBP) for reducing the speckle noise in ultrasound images. The new filter achieves good results in reducing the noise without affecting the image content. The performance of the proposed filter has been compared with some of the commonly used denoising filters. The proposed filter outperforms the existing filters in terms of quantitative analysis and in edge preservation. The experimental analysis is done using various ultrasound images