981 resultados para Activation pathway
Resumo:
The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm(2) and 700 mW/cm(2)) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and TukeyA ` s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.
Resumo:
Introduction: The aim of this study was to evaluate the effectiveness of different irrigant agitation techniques on smear layer removal in curved root canals. Methods: Mesiobuccal canals of 62 extracted lower molars with a curvature of 33 degrees were used and instrumented up to Pro Taper F2. The samples were divided into 3 experimental groups according to the final irrigation: conventional irrigation, ultrasonic irrigation, and sonic irrigation by using the Endo Activator system. The control group was composed of 2 specimens without any final irrigation. In all of the experimental groups, 5 mL of 17% ethylenediaminetetraacetic acid was used for 1 minute, and 5 mL of 2.5% NaOCl was used for 30 seconds. The analysis of the apical region was performed via scanning electron microscopy by 3 examiners. The data were submitted to the Kruskal-Wallis and Dunn tests (P<.05). Results: The activation systems removed significantly more smear layer than did conventional irrigation. Conclusions: Sonic and ultrasonic irrigation resulted in better removal of the smear layer in the apical third of curved root canals than did conventional irrigation. (J Endod 2011;37:1268-1271)
Resumo:
Background: Galectin-3 has been implicated in tumor progression of some malignancies as thyroid, prostate, and salivary gland tumors. Recently, it has been suggested that this protein may be an important mediator of the beta-catenin/Wnt pathway. Moreover, nuclear galectin-3 expression has been implicated in cell proliferation, promoting cyclin D1 activation. Thus, the present study aimed to correlate galectin-3 expression with beta-catenin and cyclin D1 expressions in adenoid cystic carcinoma (ACC) and in polymorphous low-grade adenocarcinoma (PLGA). Methods: Fifteen formalin-fixed paraffin-embedded cases of each tumor were retrieved from the files of the Surgical Oral Pathology Service at the University of Sao Paulo and the proteins were analyzed by immunohistochemistry. Results: Adenoid cystic carcinoma showed galectin-3 immunostaining mainly in the nuclei, while PLGA revealed a positive mostly cytoplasmic reaction to galectin-3 in the largest part of tumor cells. Both tumors showed intense cytoplasmic/nuclear staining for beta-catenin in majority of cases. Cyclin D1 immunoreactivity was not detected in 14/15 PLGA and showed specific nuclear staining in 10/15 cases of ACC in more than 5% of the neoplastic cells. Cyclin D1 expression was correlated with cytoplasmic and nuclear galectin-3 expression in ACC (P < 0.05). Conclusions: These results suggest that in ACC galectin-3 may play a role in cellular proliferation through cyclin D1 activation. In addition, nuclear expression of galectin-3 in ACC may be related to a more aggressive behavior of this lesion. Although beta-catenin seems to play a role in carcinogenesis in both lesions, it seems that it does not bind to galectin-3 for cyclin D1 stimulation.
Resumo:
The aim of the present study was to evaluate the signal transducer and activator of transcription (STAT3) expression, which is constitutively active in different types of malignant tumours, in salivary gland tumours. Fifty biopsies of salivary gland tumours (9 pleomorphic adenomas, 12 adenoid cystic carcinomas, 7 epithelial-myoepithelial carcinomas, 10 polymorphous low-grade adenocarcinomas and 12 mucoepidermoid carcinomas) and 10 normal. salivary glands were immunohistochemically labeled for STAT3 and Phospho-STAT3 (STAT3P). The labeled sections were quatitatively and quantitatively evaluated. The results showed that, in normal salivary gland, STAT3 was expressed in cytoplasm and STAT3P in nuclei of all tissue cells, except in large mucous acinar cells for which both antibodies were negative. In pleomorphic adenoma, the expression was the same as in normal glands. In malignant tumours, there were variations in the expression of these antibodies. The most important one was the presence of STAT3 in the nuclei of the malignant tumour cells, most evident in the cribriform-type of adenoid cystic carcinoma. Both toss and variation of STAT3P expression were also observed. The presence of STAT3 in the nuclei of malignant salivary gland tumours may represent an important event in oncogenesis probably contributing to tumour cell proliferation white blocking apoptosis. However, further investigation will. be necessary to support this hypothesis. (c) 2007 Pubtished by Elsevier Ltd.
Resumo:
Oral squamous cell carcinoma (OSCC) accounts for more than 90% of the malignant neoplasms that arise in the mucosa of the upper aerodigestive tract. Recent studies of cleft lip/palate have shown the association of genes involved in cancer. WNT pathway genes have been associated with several types of cancer and recently with cleft lip/palate. To investigate if genes associated with cleft lip/palate were also associated with oral cancer, we genotyped 188 individuals with OSCC and 225 control individuals for markers in AXIN2, AXIN1, GSK3 beta, WNT3A, WNT5A, WNT8A, WNT11, WNT3, and WNT9B. Statistical analysis was performed with PLINK 1.06 software to test for differences in allele frequencies of each polymorphism between cases and controls. We found association of SNPs in GSK3B (p = 0.0008) and WNT11 (p = 0.03) with OSCC. We also found overtransmission of GSK3B haplotypes in OSCC cases. Expression analyses showed up-regulation of WNT3A, GSK3B, and AXIN1 and down-regulation of WNT11 in OSCC in comparison with control tissues (P < 0.001). Additional studies should focus on the identification of potentially functional variants in these genes as contributors to human clefting and oral cancer.
Resumo:
Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.
Resumo:
The aim of the present study was to investigate the role of the spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase (sGC)-cGMP pathway in nociceptive response of rats to the formalin experimental nociceptive model. Animals were handled and adapted to the experimental environment for a few days before the formalin test was applied. For the formalin test 50 mu l of a 1% formalin solution was injected subcutaneously in the dorsal surface of the right hind paw. Following injections, animals were observed for I h and flinching behavior was measured as the nociceptive response. Thirty min before the test, rats were pretreated with intrathecal injections with the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is known to induce the HO pathway. Control animals were treated with vehicles. We observed a significant increase in nociceptive response of rats treated with ZnDPBG, and a drastic reduction of flinching nociceptive behavioral response in the heme-lysinate treated animals. Furthermore, the HO pathway seems to act via cGMP, since methylene blue (a sGC inhibitor) prevented the reduction of flinching nociceptive behavioral response caused by heme-lysinate. These findings strongly indicate that the HO pathway plays a spinal antinociceptive role during the formalin test, acting via cGMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Heme oxygenase-carbon monoxide-cGMP (HO-CO-cGMP) pathway has been reported to be involved in peripheral and spinal modulation of inflammatory pain. However, the involvement of this pathway in the modulation of acute painful stimulus in the absence of inflammation remains unknown. Thus, we evaluated the involvement of the HO-CO-cGMP pathway in nociception by means the of analgesia index (AI) in the tail flick test. Rats underwent surgery for implantation of unilateral guide cannula directed toward the lateral ventricle and after the recovery period (5-7 days) were subjected to the measures of baseline tail flick test Animals were divided into groups to assess the effect of intracerebroventricular administration (i.c.v.) of the following compounds: ZnDPBG (HO inhibitor) or vehicle (Na(2)CO(3)), heme-lysinate (substrate overload) or vehicle (L-lysine), or the selective inhibitor of soluble guanilate cyclase ODQ or vehicle (DMSO 1%) following the administration of heme-lysinate or vehicle. Heme overload increased AI, indicating an antinociceptive role of the pathway. This response was attenuated by i.c.v. pretreatment with the HO inhibitor ZnDPBG. In addition, this effect was dependent on cGMP activity, since the pretreatment with ODQ blocked the increase in the AI. Because CO produces most of its actions via cGMP, these data strongly imply that CO is the HO product involved in the antinociceptive response. This modulation seems to be phasic rather than tonic, since i.c.v. treatment with ZnDPBG or ODQ did not alter the AI. Therefore, we provide evidence consistent with the notion that HO-CO-cGMP pathway plays a key phasic antinociceptive role modulating noninflammatory acute pain. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide has been reported to modulate fever in the brain. However, the sites where NO exerts this modulation remain somewhat unclear. Locus coeruleus (LC) neurons express not only nitric oxide synthase (NOS) but also soluble guanylyl cyclase (sGC). In the present study, we evaluated in vivo and ex vivo the putative role of the LC NO-cGMP pathway in fever. To this end, deep body temperature was measured before and after pharmacological modulations of the pathway. Moreover, nitrite/nitrate (NOx) and cGMP levels in the LC were assessed. Conscious rats were microinjected within the LC with a non-selective NOS inhibitor (NG-monomethyl-l-arginine acetate), a NO donor (NOC12), a sGC inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) or a cGMP analogue (8-bromo-cGMP) and injected intraperitoneally with endotoxin. Inhibition of NOS or sGC before endotoxin injection significantly increased the latency to the onset of fever. During the course of fever, inhibition of NOS or sGC attenuated the febrile response, whereas microinjection of NOC12 or 8-bromo-cGMP increased the response. These findings indicate that the LC NO-cGMP pathway plays a propyretic role. Furthermore, we observed a significant increase in NOx and cGMP levels, indicating that the febrile response to endotoxin is accompanied by stimulation of the NO-cGMP pathway in the LC.
Resumo:
Sepsis induces production of inflammatory mediators such as nitric oxide (NO) and causes physiological alterations, including changes in body temperature (T(b)). We evaluated the involvement of the central NO cGMP pathway in thermoregulation during sepsis induced by cecal ligation and puncture (CLP), and analyzed its effect on survival rate. Male Wistar rats with a T(b) probe inserted in their abdomen were intracerebroventricularly injected with 1 mu L N(G)-nitro-L-arginine methyl ester (L-NAME, 250 mu g), a nonselective NO synthase (NOS) inhibitor; or aminoguanidine (250 mu g), an inducible NOS inhibitor; or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 0.25 mu g), a guanylate cyclase inhibitor. Thirty minutes after injection, sepsis was induced by cecal ligation and puncture (CLP), or the rats were sham operated. The animals were divided into 2 groups for determination of T(b) for 24 h and assessment of survival during 3 days. The drop in T(b) seen in the CLP group was attenuated by pretreatment with the NOS inhibitors (p < 0.05) and blocked with ODQ. CLP rats pretreated with either of the inhibitors showed higher survival rates than vehicle injected groups (p < 0.05), and were even higher in the ODQ pretreated group. Our results showed that the effect of NOS inhibition on the hypothermic response to CLP is consistent with the role of nitrergic pathways in thermoregulation.
Resumo:
Tonic immobility (TI) is a temporary state of profound motor inhibition induced by situations that generate intense fear, with the objective of protecting an animal from attacks by predators. A preliminary study by our group demonstrated that microinjection into the basolateral nucleus of the amygdala (BLA) of an agonist to 5-HT(1A) and 5-HT(2) receptors promoted a decrease in TI duration. In the current study, the effects of GABAergic stimulation of the BLA and the possible interaction between GABA(A) and 5-HT(2) receptors on TI modulation were investigated. Observation revealed that GABAergic agonist muscimol (0.26 nmol) reduced the duration of TI episodes, while microinjection of the GABAergic antagonist bicuculline (1 nmol) increased TI duration. Additionally, microinjection of 5-HT(2) agonist receptors (alpha-methyl-5-HT, 0.32 nmol) into the BLA decreased TI duration, an effect reversed by pretreatment with bicuculline (at the dose that had no effect per se, 0.2 nmol). Moreover, the activation of GABA(A) and 5-HT(2) receptors in the BLA did not alter the spontaneous motor activity in the open field test. These experiments demonstrated that the activation of GABA(A) and 5-HT(2) receptors of the BLA possibly produce a reduction in unconditioned fear that decreases the TI duration in guinea pigs, but this is not due to increased spontaneous motor activity, which could affect a TI episode nonspecifically. Furthermore, these results suggest an interaction between GABAergic and serotoninergic mechanisms mediated by GABA(A) and 5-HT(2) receptors. In addition, the GABAergic circuit of the BLA presents a tonic inhibitory influence on TI duration. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) have been used for pain relief in orthodontics, but clinical studies reported that they may reduce tooth movement (TM). By other side, TM seems to activate brain structures related to nociception, but the effects of NSAIDs in this activation have not been studied yet. We analyzed the effect of short-term treatment with acetaminophen or celecoxib in the separation of rat upper incisors, as well as in neuronal activation of the spinal trigeminal nucleus, following tooth movement. Thirty rats (400-420 g) were pretreated through oral gavage (1 ml/dose)with acetaminophen (200 mg/kg), celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance for TM. In controls, this appliance was immediately removed after its introduction. Rats received ground food, and every 12 h, one of the drugs or vehicle. After 48 h, they were anesthetized, maxilla was radiographed, and were perfused with 4% paraformaldehyde. Brains were further processed for Fos immunohistochemistry. TM induced incisor distalization (p < 0.05) and neuronal activation of the spinal trigeminal nucleus. Treatment with both drugs did not affect tooth movement, but reduced c-fos expression in the caudalis subnucleus. No changes in c-fos expression were seen in the oralis and interpolaris subnuclei. We conclude that neither celecoxib nor acetaminophen seems to affect tooth movement, when used for 2 days, but both drugs are able to reduce the activation of brain structures related to nociception. Short-term treatment with celecoxib, thus, may be a therapeutic alternative to acetaminophen when the latter is contra indicated. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A correlation between pain sensation and neuronal c-fos expression has been analyzed following experimental rapid maxillar expansion (RME). Adult male Wistar rats were anaesthetized and divided into three groups: animals that received an orthodontic apparatus, which was immediately removed after the insertion (control), animals that received an inactivated orthodontic apparatus (without force), and animals that received an orthodontic apparatus previously activated (140 g force). After 6, 24, 48, or 72 h, the animals were re-anaesthetized, and perfused with 4% paraformaldehyde. The brains were removed, fixed, and sections containing brain structures related to nociception were processed for Fos protein immunohistochemistry (IHC). The insertion of the orthodontic apparatus with 140 g was able to cause RME that could be seen by radiography. The IHC results showed that the number of activated neurons in the different nuclei changed according to the duration of appliance insertion and followed a temporal pattern similar to that of sensations described in clinics. The animals that received the orthodontic apparatus without force did not show RME but a smaller c-fos expression in the same brain structures. In conclusion, we demonstrate that orthodontic force used for palate disjunction activates brain structures that are related to nociception, and that this activation is related to the pain sensation described during orthodontic treatment. (c) 2008 Elsevier Inc. All rights reserved.