972 resultados para Abelian fields
Resumo:
The biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid, Cotesia flavipes, the decrease in D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Native Tachinidae fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in the success. Quantitative data confirming the actual contribution of these agents to the control of D. saccharalis are, however, rather scant. The purpose of this study was to investigate the spatial pattern of parasitism of these parasitoids in D. saccharalis populations at two large spatial scales (fields and zones). To investigate this subject, a large data set comprising information collected from a sugarcane mill located in the state of São Paulo, Brazil (São João sugarcane mill) was analysed. When regressions between the proportion parasitism against host density were computed, the percentage of significant regressions with either a positive or a negative slope was very small at both spatial scales for both parasitoid species. Regressing the densities of tachinid-parasitized hosts against host densities per field showed that these parasitoids presented a 'moderate aggregative' response to host densities, as 53.33% of the regressions were positively significant. Cotesia flavipes was 'weakly aggregated' on host densities at the field level, because only 33.33% of the regressions were positively significant. At the zone level, neither aggregative nor spatial proportion parasitism responses were evident for either parasitoid species due to the small percentage of significant regressions computed.
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
In the light-cone gauge choice for Abelian and non-Abelian gauge fields, the vector boson propagator carries in it an additional spurious or unphysical pole intrinsic to the choice requiring a careful mathematical treatment. Research in this field over the years has shown us that mathematical consistency only is not enough to guarantee physically meaningful results. Whatever the prescription invoked to handle such an object, it has to preserve causality in the process. On the other hand, the covariantization technique is a well-suited one to tackle gauge-dependent poles in the Feynman integrals, dispensing the use of ad hoc prescriptions. In this work we show that the covariantization technique in the light-cone gauge is a direct consequence of the canonical quantization of the theory. © World Scientific Publishing Company.
Resumo:
This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.
Resumo:
We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation. © 2006 Materials Research Society.
Resumo:
We use the Ogg-McCombe Hamiltonian together with the Dresselhaus and Rashba spin-splitting terms to find the g factor of conduction electrons in GaAs-(Ga,Al)As semiconductor quantum wells (QWS) (either symmetric or asymmetric) under a magnetic field applied along the growth direction. The combined effects of non-parabolicity, anisotropy and spin-splitting terms are taken into account. Theoretical results are given as functions of the QW width and compared with available experimental data and previous theoretical works. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This investigation was carried out in Patrocínio Paulista municipality, located in the state of São Paulo, Brazil. Sugarcane has been extensively cultivated in the area in order to be utilized by the sugar and ethanol industries. The major effluent from the ethanol industry, vinasse, has been applied in the sugarcane fields as an alternative to supply several nutrients in crop production. Because it may represent a major environmental problem in that area, with implications to human health, soil samples from six points were collected and analyzed in order to evaluate the main factors related to the vinasse application in the ground. The importance of clays, iron oxides, organic matter and minor refractory minerals was also considered for explaining several relationships identified from the acquired data. © 2009 WIT Press.
Resumo:
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.
Resumo:
This paper is concerned with closed orbits of non-smooth vector fields on the plane. For a class of non-smooth vector fields we provide necessary and sufficient conditions for the existence of closed poly-trajectorie. By means of a regularization process we prove that hyperbolic closed poly-trajectories are limit sets of a sequence of limit cycles of smooth vector fields. In our approach the Poincaré Index for non-smooth vector fields is introduced. © 2013 Springer Science+Business Media New York.
Resumo:
We verify that SU(N)TC⊗ - SU(3) L⊗ - U(1)X models, where the gauge symmetry breaking is totally dynamical and promoted by the non-Abelian technicolor group and the strong Abelian interactions, are quite constrained by the LHC data. The theory contains a T quark self-energy involving the mixing between the neutral gauge bosons, which introduces the coupling between the light and heavy composite scalar bosons of the model. We determine the lightest scalar boson mass for these models from an effective action for composite operators, assuming details about the dynamics of the strong interaction theories. Comparing the value of this mass with the ATLAS and CMS observation of a new boson with a mass M∼125 GeV and considering the lower bound determined by the LHC Collaboration on the heavy neutral gauge boson (Z′) present in these models, we can establish constraints on the possible models. For example, if SU(N)TC≡SU(2)TC, with technifermions in the fundamental representation, the model barely survives the confrontation with the LHC data. © 2013 American Physical Society.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography