837 resultados para AVAILABLE DICARBOXYLIC-ACIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylella fastidiosa is a xylem-restricted plant pathogen that causes a range of diseases in several and important crops. Through comparative genomic sequence analysis many genes were identified and, among them, several potentially involved in plant-pathogen interaction. The experimental determination of the primary sequence of some markedly expressed proteins for X fastidiosa and the comparison with the nucleic acids sequence of genome identified one of them as being SCJ21.16 (XFa0032) gene product. The comparative analysis of this protein against SWISSPROT database, in special, resulted in similarity with a-hydroxynitrile lyase enzyme (HNL) from Arabidopsis thaliana, causing interest for being one of the most abundant proteins both in the whole cell extract as well as in the extracellular protein fraction. It is known that HNL enzyme are involved in a process termed ""cyanogenesis"", which catalyzes the dissociation of alpha-hydroxinitrile into carbonyle and HCN when plant tissue is damaged. Although the complete genome sequences of X.fastidiosa are available and the cyanogenesis process is well known, the biological role of this protein in this organism is not yet functionally characterized. In this study we presented the cloning, expression, characterization of recombinant HNL from X fastidiosa, and its probable function in the cellular metabolism. The successful cloning and heterologous expression in Escherichia coli resulted in a satisfactory amount of the recombinant HNL expressed in a soluble, and active form giving convenient access to pure enzyme for biochemical and structural studies. Finally, our results confirmed that the product of the gene XFa0032 can be positively assigned as FAD-independent HNLs. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the synthesis of novel biological hybrid materials, where 3D structures were obtained using gold nanoparticles (AuNps) and methionine (Met) in a one-step procedure in aqueous media. The type of nanostructure can be controlled by tuning the intermolecular interactions between Met and AuNp, which strongly depends on the pH used for the synthesis. Computational simulation using the density-functional theory (DFT) showed that the AuNp - Met 3D structures are formed upon reorientation of Met molecules so that the backbone amine groups interact via H-bonds. These findings were experimentally confirmed using FTIR and UV-vis spectroscopy. Crown Copyright (C) 2008 Published by Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to point out benefits as well as disadvantages associated with the use of locally available, not necessarily standardized, components in stand-alone electrical power systems at rural locations. Advantages and challenges arising when the direct involvement in design, construction and maintenance of the power system is reserved to people based in the area of implementation are discussed. The presented research is centered around one particular PV-diesel hybrid system in Tanzania; a case study in which technical and social aspects related to the particular power system are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.winthrop.edu/dacusfocus/1030/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography–quadrupole mass spectrometry detection (GC–qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC–qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen™/polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex). An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC–qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples. The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58.0%), ethyl octanoate (15.1%), ethyl dodecanoate (13.9%) followed by 3-methyl-1-butanol (1.8%) and isoamyl acetate (1.4%) were found to be the major VOCs in whisky samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suitable analytical procedure based on static headspace solid-phase microextraction (SPME) followed by thermal desorption gas chromatography–ion trap mass spectrometry detection (GC–ITDMS), was developed and applied for the qualitative and semi-quantitative analysis of volatile components of Portuguese Terras Madeirenses red wines. The headspace SPME method was optimised in terms of fibre coating, extraction time, and extraction temperature. The performance of three commercially available SPME fibres, viz. 100 lm polydimethylsiloxane; 85 lm polyacrylate, PA; and 50/30 lm divinylbenzene/carboxen on polydimethylsiloxane, was evaluated and compared. The highest amounts extracted, in terms of the maximum signal recorded for the total volatile composition, were obtained with a PA coating fibre at 308C during an extraction time of 60 min with a constant stirring at 750 rpm, after saturation of the sample with NaCl (30%, w/v). More than sixty volatile compounds, belonging to different biosynthetic pathways, have been identified, including fatty acid ethyl esters, higher alcohols, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, and monoterpenols/C13-norisoprenoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes a simple and sensitive HPLC method with photo-diode array detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250 4.6 mm, 5mm) column. The elution was performed in 12 min for the organic acids and in 60 min for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target compounds were detected at 210 nm (organic acids, flavan-3-ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans-resveratrol) and 360 nm (flavonoids). The RSD for the repeatability test (n55) of peak area and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the recovery results, with averaged values between 80 and 104% for polyphenols and 97–105% for organic acids. The calibration curves, obtained by triplicate injection of standard solutions, showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 0.9997 for organic acids. The LOD was in the range of 0.07–0.49 mg/L for polyphenols (cinnamic and gallic acids, respectively) and 0.001–0.046 g/L for organic acids (oxalic and lactic acids, respectively). The method was successfully used to measure and assess the polyphenolic fingerprint and organic acids profile of red, white, rose ´ and fortified wines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.