839 resultados para ALGINATE SCAFFOLDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to (1) evaluate cellular senescence in chondrocytes from osteoarthritic articular cartilage, (2) investigate the hypothesis that oxidative stress is a feature of canine OA chondrocytes and that oxidative stress contributes to cellular senescence in canine chondrocytes, (3) investigate the hypothesis that osteoarthritic chondrocytes alter the gene expression of adjacent normal chondrocytes in OA joints leading to modulation of genes known to play a role in the pathogenesis of OA and (4) evaluate the presentation of dogs undergoing femoral head excision in veterinary referral practice in the UK as a treatment for osteoarthritis of the coxofemoral joint, and to categorise the distribution and severity of associated pathological lesions. Chondrocytes from osteoarthritic and normal cartilage were examined for levels of senescence. Initially chondrocytes were cultured using an alginate bead culture system, thought to mimic the extracellular matrix of articular cartilage. However, these chondrocytes showed almost no growth as compared to monolayer culture where they grew rapidly. OA chondrocytes entered the senescent state after 1.5 to 4.9 population doublings in monolayer culture, while normal chondrocytes underwent 4.8 to 14.6 population doublings before entering the senescent state. Osteoarthritic chondrocytes had increased levels of markers of cellular senescence (senescence associated beta-galactosidase accumulation and p16 protein accumulation) as compared to normal chondrocytes, suggesting that chondrocyte senescence is a feature of canine osteoarthritis. An experimental model for the induction of oxidative stress in chondrocyte cell culture was developed using tert-Butyl hydroperoxide and total cellular glutathione was measured as an indicator of cellular oxidative stress levels. Experimental induction of oxidative stress in both normal and osteoarthritic chondrocytes in cell culture resulted in increased amounts of cellular senescence, shown by an increase in levels of senescence associated beta-galactosidase accumulation and decreased replicative capacity. Experimental induction of oxidative stress also resulted in altered gene expression of three genes important to the degradation of the extracellular matrix; MMP-13, MMP-3 and Col-3A1, measured by RT-PCR, in normal canine chondrocytes in monolayer cell culture. MMP-3 showed the greatest relative expression change, with a fold-change of between 1.43 and 4.78. MMP-13 had a fold change of 1.16 to 1.38. Col-3A1 was down regulated, with a fold-change of between 0.21 and 0.31. These data demonstrate that experimentally induced oxidative stress in chondrocytes in monolayer culture increases levels of cellular senescence and alters the expression of genes relevant to the pathogenesis of canine OA. Coculture of osteoarthritic chondrocytes with normal canine chondrocytes resulted in gene modulation in the normal chondrocytes. Altered gene expression of ten genes known to play a role in the pathogenesis of osteoarthritis was detected in the normal chondrocytes (fold change shown in brackets); TNF-alpha (11.95), MMP-13 (5.93), MMP-3 (5.48), IL-4 (7.03), IL-6 (5.3), IL-8 (4.92), IL-F3 (4.22), COL-3A1 (4.12), ADAMTS-4 (3.78) and ADAMTS-5 (4.27). In total, 594 genes were significantly modulated suggesting that osteoarthritic chondrocytes contribute to the disease propagation by altering the gene expression of adjacent normal chondrocytes, thus recruiting them into the disease process. Gene expression changes were measured by microarray analysis and validated by RT-PCR and Western blot analysis. An epidemiological study of femoral heads collected from dogs undergoing total hip replacement surgery as a treatment for osteoarthritis of the coxofemoral joint secondary to canine hip dysplasia revealed that there was no characteristic pattern of cartilage lesion for canine hip dysplasia. Severe pathology of the femoral head with cartilage erosion occurred in 63.9% of cases and exposure of subchondral bone in 31.3% of cases. The work presented in this thesis has demonstrated that cellular senescence is a feature of chondrocytes from canine osteoarthritic cartilage and suggests that cellular senescence and oxidative stress play an important role in the pathogenesis of osteoarthritis in dogs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Markets are increasingly competitive and the companies feel the urge to improve their manufacturing processes. Blending that with a larger control of quality and safety it was created a need to develop new methods of analysis each time more accurate, faster and with lower costs. Alentejo is a region with a wide variety of soils, most of them are rich in calcium and potassium. In the production of sparkling wine many wineries use encapsulated yeast in alginate beads, instead of the traditional method, champenoise. The first method is faster, allowing a more versatile production, reducing the risk of contamination and features organoleptic characteristics similar to the traditional method (yeast free). However, encapsulated yeast spheres should be only used if the base wine matches a number of features, among them calcium content. In this study the calcium content in the wine was determined by atomic absorption spectroscopy (AAS) and by near-infrared spectroscopy. The AAS is a high sensitivity method clearly produces a reliable result, however it is very time consuming and produces great quantities of environmental waste, therefore the possibility of using near-infrared spectroscopy as a method was studied to be a fast, simple and clean alternative to the AAS. It was obtained a calibration model with a variation coefficient higher than 0.80 which indicates that the near-infrared spectroscopy as an adequately alternative the ASS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work was to develop stategies for raising the shelf-life of red raspberries (Rubus idaeus L.). The quality of red raspberries over shelf-life after coated with alginate plus Brazilian Citrus essential oils was evaluated. Edible coatings did not significantly influence the firmness loss, soluble solids content (SCC), and brightness of fruits over time, when compared to control, nevertheless all edible coatings with essential oils induced higher weight loss than those samples in which the essential oils were not incorporated. Fruits coated with alginate plus lime essential oil (0.2%) or orange essential oil (0.1%) after 15 days of storage had less red skin, but were darker than the remaining samples. The less red colour verified in these samples was also coincident with the lower concentration of anthocyanins at the end of the experiment as well as the lower capacity for scavenging ABTS free radicals or quenching singlet oxygen. The edible coatings supplemented with the essential oil of orange either at 0.1 % or 0.2 % were very efficient to control the yeasts and moulds growth after 15 days of storage. To control the development of aerobic mesophilic bacteria the use of essential oil of lemon 0.2% and essential oil of orange 0.1% were the most efficient. The essential oils used in the edible coatings did not significantly change the sensorial properties of the fruit. Cyanidin-3-O-sophoroside, cyanidin-3-O-glucosylrutinoside, cyanidin-3-O-xylosylrutinoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, pelargonidin-3-O-sophoroside, pelargonidin-3-O-glucosylrutinoside, pelargonidin 3-O-glucoside, pelargonidin 3-O-rutinoside were found in raspberries fruits. An unknown cyanidin derivative was also found in all samples, constituting 27.4% of total anthocyanin content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrins are α/β-heterodimeric transmembrane adhesion receptors that mediate cell-cell and cell-ECM interactions. Integrins are bidirectional signalling receptors that respond to external signals (“outside-in” signalling) and in parallel, transduce internal signals to the matrix (“inside-out” signalling), to regulate vital cellular functions including migration, survival, growth and differentiation. Therefore, dysregulation of these tightly regulated processes often results in uncontrolled integrin activation and abnormal tissue expression that is responsible for many diseases. Because of their important roles in physiological and pathological events, they represent a validated target for therapeutic and diagnostic purposes. The aim of the present Thesis was focused on the development of peptidic ligands for α4β1 and αvβ3 integrin subtypes, involved in inflammatory responses (leukocytes recruitment and extravasation) and cancer progression (angiogenesis, tumor growth, metastasis), respectively. Following the peptidomimetic strategy, we designed and synthesized a small library of linear and cyclic hybrid α/β-peptidomimetics based on the phenylureido-LDV scaffolds for the treatment of chronic inflammatory autoimmune diseases. In order to implement a fast and non-invasive diagnostic method for monitoring the course of the inflammatory processes, a flat glass-surface of dye-loaded Zeolite L-crystal nanoparticles was coated with bioactive α4β1-peptidomimetics to detect specific integrin-expressing cells as biomarkers of inflammatory diseases. Targeted drug delivery has been considered a promising alternative to overcome the pharmacokinetic limitations of conventional anticancer drugs. Thus, a novel Small-Molecule Drug Conjugate was synthesized by connecting the highly cytotoxic Cryptophycin to the tumor-targeting RGDfK-peptide through a protease-cleavable linker. Finally, in view to making the peptide synthesis more sustainable and greener, we developed an alternative method for peptide bonds formation employing solvent-free mechanochemistry and ultra-mild minimal solvent-grinding conditions in common, inexpensive laboratory equipment. To this purpose, standard amino acids, coupling agents and organic-green solvents were used in the presence of nanocrystalline hydroxyapatite as a reusable, bio-compatible inorganic basic catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer represents one of the most relevant and widespread diseases in the modern age. In this context, integrin receptors are important for the interactions of cells with extracellular matrix and for the development of both inflammation and carcinogenic phenomena. There are many tricks to improve the bioactivity and receptor selectivity of exogenous ligands; one of these is to integrate the amino acid sequence into a cyclic peptide to restrict its conformational space. Another approach is to develop small peptidomimetic molecules in order to enhance the molecular stability and open the way to versatile synthetic strategies. Starting from isoxazoline-based peptidomimetic molecules we recently reported, in this thesis we are going to present the synthesis of new integrin ligands obtained by modifying or introducing appendages on already reported structures. Initially, we are going to introduce the synthesis of linear and cyclic α-dehydro-β-amino acids as scaffolds for the preparation of bioactive peptidomimetics. Subsequently, we are going to present the construction of small molecule ligands (SMLs) based delivery systems performed starting from a polyfunctionalised isoxazoline scaffold, whose potency towards αVβ3 and α5β1 integrins has already been established by our research group. In the light of these results and due to the necessity to understand the behaviour of a single enantiomer of the isoxazoline-based compounds, the research group decided to synthesise the enantiopure heterocycle using a 1,3-dipolar cycloaddiction approach. Subsequently, we are going to introduce the synthesis of a Reporting Drug Delivery System composed by a carrier, a first spacer, a linker, a self-immolative system, a second spacer and a latent fluorophore. The last part of this work will describe the results obtained during the internship abroad in Prof. Aggarwal’s laboratory at the University of Bristol. The project was focused on the Mycapolyol A synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If we look back in time at the history of humanity, we can state that our generation is living an era of outstanding efficiency and progress because of globalization and global competition, even if this is resulting in the rapid depletion of energy sources and raw materials. The environmental impact of non-biodegradable plastic wastes is of increasing global concern: nowadays, imagining a world without synthetic plastics seems impossible, though their large-scale production and their extensive use have only spread since the end of the World War II. In recent years, the demand for sustainable materials has increased significantly and, with a view to circular economy, research has also focused on the enhancement and subsequent reuse of waste materials produced by industrial processing, intensive farming and the agricultural sector. Plastic polymers have been the most practical and economical solution for decades due to their low cost, prompt availability and excellent optical, mechanical and barrier properties. Biodegradable polymers could replace them in many applications, thus reducing the problems of traditional plastics disposability and the dependence on petroleum. Natural biopolymers are in fact characterized by a high biocompatibility and biodegradability and have already prompted research in the field of regenerative medicine. During my PhD, my goal was to use natural polymers from sustainable sources as raw materials to produce biomaterials, which are materials designed to interface with biological systems to evaluate, support or replace any tissue, organ, or function of the body. I focused on the use of the most abundant biopolymers in nature to produce biomaterials in the form of films, scaffolds and cements. After a complete characterization, the materials were proposed for suitable applications in different fields, from tissue engineering to cosmetics and food packaging. Some of the obtained results were published on international scientific and peer-reviewed journals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazie agli sviluppi delle nanotecnologie biomedicali nell’ambito del rilascio controllato di farmaci e dell’ingegneria tissutale, sta diventando sempre più concreta la possibilità di superare i principali limiti della medicina tradizionale, basata nel primo caso su somministrazioni ripetute e a livello sistemico di principio attivo, e nel secondo caso sul trapianto (con relativi problemi di rigetto e carenza di donatori) e su trattamenti farmacologici non risolutivi. Tramite lo studio dei biomateriali e delle loro proprietà è invece possibile realizzare soluzioni ad hoc per l’ingegneria tissutale e per il rilascio controllato e mirato di farmaco. Nel presente studio, sono stati realizzati, mediante elettrofilatura, scaffolds a partire da blend fisiche di poli(butilene succinato) (PBS) e cheratina, a diversa composizione. Il primo è un polimero sintetico biocompatibile e approvato dalla Food and Drug Administration, con buone resistenza meccanica e lavorabilità, ma tempi di degradazione piuttosto lenti, a differenza della cheratina, polimero naturale, che risulta troppo rigido e difficile da processare, ma con buoni tempi di degradazione ed un’ottima biocompatibilità. Le blend sono state sottoposte a studi di miscibilità, mentre sui tappetini elettrofilati è stata effettuata una caratterizzazione morfologica, termica e meccanica. Inoltre, in vista di possibili applicazioni nell’ambito dell’ingegneria tissutale e del rilascio controllato di farmaco, si sono svolti anche test di biodegradazione in ambiente enzimatico e prove di biocompatibilità in vitro, nel primo caso, e studi di rilascio di diclofenac, comune antinfiammatorio, e test di adesione alla pelle, nel secondo caso. In conclusione, ogni tipo di indagine, seppur preliminare, ha comprovato che l’unione tra il PBS e la cheratina ha dato vita a nuove miscele facilmente processabili per potenziali utilizzi in due ambiti biomedicali di particolare interesse applicativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of bone substitutes is highly researched an innovative material able to fill gaps with high mechanical performances and able to stimulate cell response, permitting the complete restoration of the bone portion. In this respect, the synthesis of new bioactive materials able to mimic the compositional, morphological and mechanical features of bone is considered as the elective approach for effective tissue regeneration. Hydroxyapatite (HA) is the main component of the inorganic part of bone. Additionally ionic substitution can be performed in the apatite lattice producing different effects, depending from the selected ions. Magnesium, in substitution of calcium, and carbonate, in substitution of phosphate, extensively present in the biological bones, are able to improve properties naturally present in the apatitic phase, (i.e. biomimicry, solubility e osteoinductive properties). Other ions can be used to give new useful properties, like antiresorptive or antimicrobial properties, to the apatitic phase. This thesis focused on the development of hydroxyapatite nanophases with multiple ionic substitutions including gallium, or zinc ions, in association with magnesium and carbonate, with the purpose to provide double synergistic functionality as osteogenic and antibacterial biomaterial. Were developed bioactive materials based on Sr-substituted hydroxyapatite in the form of sintered targets. The obtained targets were treated with Pulsed Plasma Deposition (PED) resulting in the deposition of thin film coatings able to improve the roughness and wettability of PEEK, enhancing its osteointegrability. Were investigated heterogeneous gas-solid reactions, addressed to the biomorphic transformations of natural 3D porous structures into bone scaffolds with biomimetic composition and hierarchical organization, for application in load-bearing sites. The kinetics of the different reactions of the process were optimized to achieve complete and controlled phase transformation, maintaining the original 3-D morphology. Massive porous scaffolds made of ion-substituted hydroxyapatite and bone-mimicking structure were developed and tested in 3-D cell culture models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD project focuses on the study of the early stages of bone biomineralization in 2D and 3D cultures of osteoblast-like SaOS-2 osteosarcoma cells, exposed to an osteogenic cocktail. The efficacy of osteogenic treatment was assessed on 2D cell cultures after 7 days. A large calcium minerals production, an overexpression of osteogenic markers and of alkaline phosphatase activity occurred in treated samples. TEM microscopy and cryo-XANES micro-spectroscopy were performed for localizing and characterizing Ca-depositions. These techniques revealed a different localization and chemical composition of Ca-minerals over time and after treatment. Nevertheless, the Mito stress test showed in treated samples a significant increase in maximal respiration levels associated to an upregulation of mitochondrial biogenesis indicative of an ongoing differentiation process. The 3D cell cultures were realized using two different hydrogels: a commercial collagen type I and a mixture of agarose and lactose-modified chitosan (CTL). Both biomaterials showed good biocompatibility with SaOS-2 cells. The gene expression analysis of SaOS-2 cells on collagen scaffolds indicated an osteogenic commitment after treatment. and Alizarin red staining highlighted the presence of Ca-spots in the differentiated samples. In addition, the intracellular magnesium quantification, and the X-ray microscopy on mineral depositions, suggested the incorporation of Mg during the early stages of bone formation process., SaOS-2 cells treated with osteogenic cocktail produced Ca mineral deposits also on CTL/agarose scaffolds, as confirmed by alizarin red staining. Further studies are underway to evaluate the differentiation also at the genetic level. Thanks to the combination of conventional laboratory methods and synchrotron-based techniques, it has been demonstrated that SaOS-2 is a suitable model for the study of biomineralization in vitro. These results have contributed to a deeper knowledge of biomineralization process in osteosarcoma cells and could provide new evidences about a therapeutic strategy acting on the reversibility of tumorigenicity by osteogenic induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) is a widely recognized gasotransmitter, with key roles in physiological and pathological processes. The accurate quantification of H2S and reactive sulfur species (RSS) may hold important implications for the diagnosis and prognosis of various diseases. However, H2S species quantification in biological matrices is still a challenge. Among the sulfide detection methods, monobromobimane (MBB) derivatization coupled with reversed phase high-performance liquid chromatography (RP-HPLC) is one of the most reported. However, it is characterized by a complex preparation and time-consuming process, which may alter the actual H2S level. Moreover, quantitative validation has still not been described based on a survey of previously published works. In this study, we developed and validated an improved analytical protocol for the MBB RP-HPLC method. Main parameters like MBB concentration, temperature, reaction time, and sample handling were optimized, and the calibration method was further validated using leave-one-out cross-validation (CV) and tested in a clinical setting. The method shows high sensitivity and allows the quantification of H2S species, with a limit of detection (LOD) of 0.5 µM and a limit of quantification (LOQ) of 0.9 µM. Additionally, this model was successfully applied in measurements of H2S levels in the serum of patients subjected to inhalation with vapors rich in H2S. In addition, a properly procedure was established for H2S release with the modified MBB HPLC-FLD method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer Silk-Fibroin scaffolds with the combination of different H2S donor’s concentration with respect to the weight of PLGA nanofiber. In the end, some efforts were made on sulfide measurements by using size exclusion chromatography fluorescence/ultraviolet detection and inductively coupled plasma-mass spectrometry (SEC-FLD/UV-ICP/MS). It’s intended as a preliminary study in order to define the feasibility of a separation-detection-quantification platform to analyze biological samples and quantify sulfur species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Doctoral Thesis is the development of new catalytic synthetic methodologies in the context of the modern organic chemistry setting, with special focus on the use of cheap, sustainable catalytic materials. Specifically, during the course my PhD, I focused my research on two main distinct catalytic strategies, namely: the use of carbonaceous materials as catalysts (carbocatalysis) and nickel catalysis, also investigating a synergistic combination of the two. These methodologies were explored as means for the manipulation of (hetero)aromatic cores, representing ubiquitous, easily accessible and privileged scaffolds in medicinal or natural products chemistry. Both polar and radical reaction manifolds were engaged as complementary reactivities, capitalizing on metal- as well as organo-based activation modes. Particular attention has been devoted to addressing modern synthetic challenges or highly sought- after methodologies. Specifically, protocols for direct substitution of alcohols, dearomatization of arene nuclei, formation of C-S bonds, carbon dioxide fixation, C-C bond activation and fluoroalkylation were successfully achieved under carbo- or nickel catalyzed conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La giunzione miotendinea (MTJ) è una struttura anatomica specializzata che collega il muscolo al tendine. La sua funzione è quella di permettere la trasmissione della forza generata dal muscolo al tendine, permettendo il movimento. Essendo una struttura di interfaccia che funge da raccordo tra due tipi di tessuti molto differenti, tende a risentire di una forte concentrazione di tensione, questo la rende fortemente suscettibile a rottura. Le tecniche ad oggi utilizzare per riparare lesioni alla MTJ risultano inadatte ad una completa ed ottimale ripresa meccanica. Al fine di trovare una soluzione a questo problema, l’ingegneria tissutale sta lavorando alla fabbricazione di strutture tridimensionali che siano in grado di imitare al meglio la struttura nativa della MTJ. Le tecniche utilizzate per la produzione di tali strutture sono, principalmente, stampa 3D ed elettrofilatura. Il vantaggio di queste tecniche è la loro elevata risoluzione, che permette di controllare finemente l’architettura di tali strutture artificiali. Nella seguente tesi verrà presentato lo stato dell’arte sulle tecniche utilizzate per la fabbricazione di scaffolds per la rigenerazione della MTJ, soffermandosi in particolare sui metodi di fabbricazione e sulle prestazioni morfologiche, meccaniche e cellulari effettuando un confronto tra i diversi studi che se ne sono occupati, individuandone punti di forza, debolezze e possibili studi futuri che potranno essere effettuati su tali scaffolds. In questo modo, sarà possibile rendersi conto di quale di queste tecniche risulti essere più promettente per il futuro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional (3D) multicellular spheroids are exceptional in vitro cell models for their ability to accurately mimic real cell-cell interaction processes. However, the challenges in producing well-defined spheroids with controlled size together with the deficiency of techniques to monitor them significantly restrict their use. Herein, a novel device to study spheroid formation in real time is presented. By exploiting electrochemical impedance spectroscopy, a multi-electrode array (MEA) attached to a calcium alginate scaffold is able to monitor the behaviour of 36 different hydrogel wells. The scaffold contains inverted shape pyramidal microwells, which guide the aggregation of cells into spheroids with controlled dimensions. Preliminar studies on calcium alginate, optimisation of fabrication strategy are shown, together with testing of the device in the presence and the absence of the hydrogel. Lastly, the device was tested for its intended aim, i.e. to monitor the formation of a spheroid, proving its potential as an impedance biosensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I tendini e i legamenti sono fondamentali per lo svolgimento dei movimenti e spesso sono soggetti a rotture o lesioni che rappresentano circa il 50% di tutto il sistema muscoloscheletrico. Il tessuto è poco cellularizzato per questo ad oggi non esistono dispositivi impiantabili, come protesi o innesti biologici in grado di riprodurre in maniera soddisfacente la struttura gerarchica e le proprietà meccaniche. Le tecniche attuali ossia quelle conservative e chirurgiche hanno significative limitazioni per questo i ricercatori stanno sviluppando strutture innovative, detti scaffold, per guidare le cellule nella rigenerazione del tessuto di interesse. Tra le varie tecnologie per produrre scaffold per i tendini e i legamenti, l’elettrofilatura è una delle più promettenti. Questa consente di produrre nanofibre dalle caratteristiche morfologiche e meccaniche simili alle fibrille di collagene di tendini e legamenti. Questo lavoro di tesi presenta la descrizione di procedure e metodi di produzione e caratterizzazione di strutture gerarchiche elettrofilate in acido poli-L-lattico e in acido poli-L-lattico e collagene. I bundles elettrofilati, in entrambi i materiali, sono in grado di replicare i fascicoli di collagene mentre gli scaffold gerarchici sono stati prodotti assemblando i bundles con una membrana elettrofilata, in grado di riprodurre fedelmente l’ epitenon/epiligament e l’endotenon/endoligament, riproducendo l’intera struttura gerarchica di tendini e legamenti. Gli scaffolds gerarchici sono stati prodotti assemblando i bundles con una membrana elettrofilata, in grado di riprodurre fedelmente l’epitenon/ epiligament e l’endotenon/endoligament. Tutte le strutture realizzate sono state analizzate e testate sia morfologicamente che meccanicamente per valutare la similitudine con i rispettivi tessuti biologici.