972 resultados para ALGA MICROCYSTIS-AERUGINOSA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Cefepime has been associated with a greater risk of mortality than other beta-lactams in patients treated for severe sepsis. Hypotheses for this failure include possible hidden side-effects (for example, neurological) or inappropriate pharmacokinetic/pharmacodynamic (PK/PD) parameters for bacteria with cefepime minimal inhibitory concentrations (MIC) at the highest limits of susceptibility (8 mg/l) or intermediate-resistance (16 mg/l) for pathogens such as Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. We examined these issues in a prospective non-interventional study of 21 consecutive intensive care unit (ICU) adult patients treated with cefepime for nosocomial pneumonia. METHODS: Patients (median age 55.1 years, range 21.8 to 81.2) received intravenous cefepime at 2 g every 12 hours for creatinine clearance (CLCr) >or= 50 ml/min, and 2 g every 24 hours or 36 hours for CLCr < 50 ml/minute. Cefepime plasma concentrations were determined at several time-points before and after drug administration by high-pressure liquid chromatography. PK/PD parameters were computed by standard non-compartmental analysis. RESULTS: Seventeen first-doses and 11 steady states (that is, four to six days after the first dose) were measured. Plasma levels varied greatly between individuals, from two- to three-fold at peak-concentrations to up to 40-fold at trough-concentrations. Nineteen out of 21 (90%) patients had PK/PD parameters comparable to literature values. Twenty-one of 21 (100%) patients had appropriate duration of cefepime concentrations above the MIC (T>MIC >or= 50%) for the pathogens recovered in this study (MIC <or= 4 mg/l), but only 45 to 65% of them had appropriate coverage for potential pathogens with cefepime MIC >or= 8 mg/l. Moreover, 2/21 (10%) patients with renal impairment (CLCr < 30 ml/minute) demonstrated accumulation of cefepime in the plasma (trough concentrations of 20 to 30 mg/l) in spite of dosage adjustment. Both had symptoms compatible with non-convulsive epilepsy (confusion and muscle jerks) that were not attributed to cefepime-toxicity until plasma levels were disclosed to the caretakers and symptoms resolved promptly after drug arrest. CONCLUSIONS: These empirical results confirm the suspected risks of hidden side-effects and inappropriate PK/PD parameters (for pathogens with upper-limit MICs) in a population of ICU adult patients. Moreover, it identifies a safety and efficacy window for cefepime doses of 2 g every 12 hours in patients with a CLCr >or= 50 ml/minute infected by pathogens with cefepime MICs <or= 4 mg/l. On the other hand, prompt monitoring of cefepime plasma levels should be considered in case of lower CLCr or greater MICs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Small RNAs (sRNAs) are widespread among bacteria and have diverse regulatory roles. Most of these sRNAs have been discovered by a combination of computational and experimental methods. In Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium and opportunistic human pathogen, the GacS/GacA two-component system positively controls the transcription of two sRNAs (RsmY, RsmZ), which are crucial for the expression of genes involved in virulence. In the biocontrol bacterium Pseudomonas fluorescens CHA0, three GacA-controlled sRNAs (RsmX, RsmY, RsmZ) regulate the response to oxidative stress and the expression of extracellular products including biocontrol factors. RsmX, RsmY and RsmZ contain multiple unpaired GGA motifs and control the expression of target mRNAs at the translational level, by sequestration of translational repressor proteins of the RsmA family. RESULTS: A combined computational and experimental approach enabled us to identify 14 intergenic regions encoding sRNAs in P. aeruginosa. Eight of these regions encode newly identified sRNAs. The intergenic region 1698 was found to specify a novel GacA-controlled sRNA termed RgsA. GacA regulation appeared to be indirect. In P. fluorescens CHA0, an RgsA homolog was also expressed under positive GacA control. This 120-nt sRNA contained a single GGA motif and, unlike RsmX, RsmY and RsmZ, was unable to derepress translation of the hcnA gene (involved in the biosynthesis of the biocontrol factor hydrogen cyanide), but contributed to the bacterium's resistance to hydrogen peroxide. In both P. aeruginosa and P. fluorescens the stress sigma factor RpoS was essential for RgsA expression. CONCLUSION: The discovery of an additional sRNA expressed under GacA control in two Pseudomonas species highlights the complexity of this global regulatory system and suggests that the mode of action of GacA control may be more elaborate than previously suspected. Our results also confirm that several GGA motifs are required in an sRNA for sequestration of the RsmA protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: A knowledge of current epidemiology and resistance patterns is crucial to the choice of empirical treatment for bacteraemias in haematology and cancer patients. METHODS: A literature review on bacteraemias in cancer patients considered papers published between January 1st 2005 and July 6th 2011. Additionally, in 2011, a questionnaire on the aetiology and resistance in bacteraemias, and empirical treatment, was sent to participants of the European Conference on Infections in Leukemia (ECIL) meetings; recipients were from 80 haematology centres. RESULTS: For the literature review, data from 49 manuscripts were analysed. The questionnaire obtained responses from 39 centres in 18 countries. Compared with the published data, the questionnaire reported more recent data, and showed a reduction of the Gram-positive to Gram-negative ratio (55%:45% vs. 60%:40%), increased rates of enterococci (8% vs. 5%) and Enterobacteriaceae (30% vs. 24%), a decreased rate of Pseudomonas aeruginosa (5% vs. 10%), and lower resistance rates for all bacteria. Nevertheless the median rates of ESBL-producers (15-24%), aminoglycoside-resistant Gram-negatives (5-14%) and carbapenem-resistant P. aeruginosa (5-14%) were substantial, and significantly higher in South-East vs. North-West Europe. CONCLUSIONS: The published epidemiological data on bacteraemias in haematology are scanty and mostly dated. Important differences in aetiology and resistance exist among centres. Updated analyses of the local epidemiology are mandatory to support appropriate empirical therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Halecium petrosum and Halecium pusillum on the alga Halimeda tuna from Tossa de Mar, northeastern Spain, were studied. Asexual reproduction of H. petrosum, by stolonisation, occurred throughout the year except for July and August. Asexual reproduction of H. pusillum, by planktonic propagules, occurred throughout the year. Sexual reproduction was limited to the autumn in H. petrosum and spring in H. pusillum. The growth rates of colonies of both species were rapid but declined with increased size. Mean colony size over two consecutive two week periods increased approximately five-fold and three-fold for H. petrosum, and six-fold and four-fold for H. pusillum. Mortality was estimated to be high for both species, especially in summer. The maximum life span of colonies (ramets) of both species was estimated to be only eight weeks. Consequently most colonies do not reproduce sexually. The absence of reproduction of H. petrosum in summer, when the turnover of algal thalli was greatest, probably contributed to the summer decline in its abundance. In both species the genet (clone) survives for unknown, possibly very long, periods by asexual reproduction which facilites colonisation of other substrata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante algún tiempo conservé la descripción y la figura de un curioso objeto, encontrado entre algas de agua dulce y que creí una clorofícea de muy especiales caracteres. Al contemplar por primera vez polen de mimosa, vi en el campo del microscopio innumerables ejemplares de mi extraordinaria «alga», cuya identidad quedaba así inequívocamente definida...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antibacterial and antifungal activity of 82 marine macroalgae (18 Chlorophyceae, 25 Phaeophyceae and 39 Rhodophyceae) was studied to evaluate their potential for being used as natural preservatives in the cosmetic industry. The bioactivity was analysed from crude extracts of fresh and lyophilised samples against three Gram-positive bacteria, two Gram-negative bacteria and one yeast using the agar diffusion technique. The samples were collected seasonally from Mediterranean and Atlantic coasts of the Iberian Peninsula. Of the macroalgae analysed, 67% were active against at least one of the six test microorganisms. The highest percentage of active taxa was found in Phaeophyceae (84%), followed by Rhodophyceae (67%) and Chlorophyceae (44%). Nevertheless, red algae had both the highest values and the broadest spectrum of bioactivity. In particular, Bonnemaisonia asparagoides, Bonnemaisonia hamifera, Asparagopsis armata and Falkenbergia rufolanosa (Bonnemaisoniales) were the most active taxa. Bacillus cereus was the most sensitive test microorganism and Pseudomonas aeruginosa was the most resistant. The highest percentages of active taxa from Phaeophyceae and Rhodophyceae were found in autumn, whereas they were found in summer for Chlorophyceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compsopogon coeruleus es un alga filamentosa de amplia distribución en aguas tropicales y subtropicales (KRISHNAMURTHY,/. Lian. Soc. (Bot.) 5 8 : 2 0 7 - 2 2 2 , 1962). En el curso del estudio sobre las fuentes de la zona de Banyoles (Gerona) la hemos recolectado en la Font de la Carpa, UTM: 31 TDG 7 6 ...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The ß-oxidation is the universal pathway that allows living organisms to degrade fatty acids. leading to lipid homeostasis and carbon and energy recovery from the fatty acid molecules. This pathway is centred on four core enzymatic activities sufficient to degrade saturated fatty acids. Additional auxiliary enzymes of the ß-oxidation are necessary for the complete degradation of a larger array of molecules encompassing the unsaturated fatty acids. The main pathways of the ßoxidation of fatty acids have been investigated extensively and auxiliary enzymes are well-known in mammals and yeast. The comparison of the established ß-oxidation systems suggests that the activities that are required to proceed to the full degradation of unsaturated fatty acids are present regardless of the organism and rely on common active site templates. The precise identity of the plant enzymes was unknown. By homology searches in the genome of Arabidopsis thaliana, I identified genes. encoding for proteins that could be orthologous to the yeast or animal auxiliary enzymes Δ 3, Δ 2-enoyl-CoA isomerase, Δ 3,5, Δ 2,4 -dienoyl-CoA isomerase, and type 2 enoyl-CoA hydratase. I established that these genes are expressed in Arabidopsis and that their expression can be correlated to the expression of core ß-oxidation genes. Through the observation of chimeric fluorescent protein fusions, I demonstrated that the identified proteins are localized in the peroxisóme, the only organelle where the ß-oxidation occurs in plants. Enzymatic assays were performed with the partially purified enzymes to demonstrate that the identified enzymes can catalyze the same in vitro reactions as their non-plant orthologs. The activities in vivo of the plant enzymes were demonstrated by heterologous complementation of the corresponding yeast Saccharomyces cerevisiae mutants. The complementation was visualized using the artificial polyhydroxyalkanoate (PHA) production in yeast peroxisomes. The recombinant strains, expressing a Pseudomonas aeruginosa PHA synthase modified for a peroxisomal localization, produce this polymer that serves as a trap for the 3-hydroxyacyl-CoA intermediaries of the ßoxidation and that reflects qualitatively and quantitatively the array of molecules that are processed through the ß-oxidation. This complementation demonstrated the implication of the plant Δ 3, Δ 2-enoyl-CoA isomerases and Δ3,5, Δ2,4-dienoyl-CoA isomerase in the degradation of odd chain position unsaturated fatty acids. The presence of a monofunctional type 2 enoyl-CoA hydratase is a novel in eukaryotes. Downregulation of the corresponding gene expression in an Arabidopsis line, modified to produce PHA in the peroxisome, demonstrated thàt this enzyme participates in vivo to the conversion of the intermediate 3R-hydroxyacyl-CoA, generated by the metabolism of fatty acids with a cis (Z)-unsaturated bond on an even-numbered carbon, to the 2Eenoyl-CoA for further degradation through the core ß-oxidation cycle. Résumé: La ß-oxydation est une voie universelle de dégradation des acides gras qui permet aux organismes vivants d'assurer une homéostasie lipidique et de récupérer l'énergie et le carbone contenus dans les acides gras. Le coeur de cette voie est composé de quatre réactions enzymatiques suffisantes à la dégradation des acides gras saturés. La présence des enzymes auxiliaires de la ß-oxydation est nécessaire à la dégradation d'une gamme plus étendue de molécules comprenant les acides gras insaturés. Les voies principales de la ß-oxydation des acides gras ont été étudiées en détail et les enzymes auxiliaires sont déterminées chez les mammifères et la levure. La comparaison entre les systèmes de ß-oxydation connus suggère que les activités requises pour la dégradation complète des acides gras insaturés reposent sur la présence de site actifs similaires. L'identité précise des enzymes auxiliaires chez les plantes était inconnue. En cherchant par homologie dans le génome de la plante modèle Arabidopsis thaliana, j'ai identifié des gènes codant pour des protéines pouvant être orthologues aux enzymes auxiliaires Δ3 Δ2-enoyl-CoA isomérase, Δ 3,5 Δ 2,4-dienoyl-CoA isomérase et enoyl-CoA hydratase de type 2 d'origine fongique ou mammalienne. J'ai établi la corrélation de l'expression de ces gènes dans Arabidopsis avec celle de gènes des enzymes du coeur de la ß-oxydation. En observant des chimères de fusion avec des protéines fluorescentes, j'ai démontré que les protéines identifiées sont localisées dans le péroxysomes, le seul organelle où la ß-oxydation se déroule chez les plantes. Des essais enzymatiques ont été conduits avec ces enzymes partiellement purifiées pour démontrer que les enzymes identifiées sont capables de catalyser in vitro les mêmes réactions que leurs orthologues non végétaux. Les activités des enzymes végétales in vivo ont été .démontrées par complémentation hétérologue des mutants de délétion correspondants de levure Saccharomyces cerevisiae. La visualisation de la complémentation est rendue possible par la synthèse de polyhydroxyalcanoate (PHA) dans les péroxysomes de levure. Les souches recombinantes expriment la PHA synthase de Pseudomonas aeruginosa modifiée pour être localisée dans le péroxysome produisent ce polymère qui sert de piège pour les 3-hydroxyacylCoAs intermédiaires de la ß-oxydation et qui reflète qualitativement et quantitativement la gamme de molécules qui subit la ß-oxydation. Cette complémentation a permis de démontrer que les Δ3, Δ2-enoyl-CoA isomérases, et la Δ3.5, Δ2,4-dienoyl-CoA isomérase végétales sont impliquées dans la dégradation des acides gras insaturés en position impaire. L'enoyl-CoA hydratase de type 2 monofonctionelle est une enzyme nouvelle chez les eucaryotes. La sous-expression du gène correspondant dans une lignée d'Arabidopsis modifiée pour produite du PHA dans le péroxysome a permis de démontrer que cette enzyme participe in vivo à la dégradation des acides gras ayant une double liaison en conformation cis (Z) en position paire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Application of salicylic acid induces systemic acquired resistance in tobacco. pchA and pchB, which encode for the biosynthesis of salicylic acid in Pseudomonas aeruginosa, were cloned into two expression vectors, and these constructs were introduced into two root-colonizing strains of P. fluorescens. Introduction of pchBA into strain P3, which does not produce salicylic acid, rendered this strain capable of salicylic acid production in vitro and significantly improved its ability to induce systemic resistance in tobacco against tobacco necrosis virus. Strain CHA0 is a well-described biocontrol agent that naturally produces salicylic acid under conditions of iron limitation. Introduction of pchBA into CHA0 increased the production of salicylic acid in vitro and in the rhizosphere of tobacco, but did not improve the ability of CHA0 to induce systemic resistance in tobacco. In addition, these genes did not improve significantly the capacity of strains P3 and CHA0 to suppress black root rot of tobacco in a gnotobiotic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ga(3+) is a semimetal element that competes for the iron-binding sites of transporters and enzymes. We investigated the activity of gallium maltolate (GaM), an organic gallium salt with high solubility, against laboratory and clinical strains of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), and methicillin-resistant S. epidermidis (MRSE) in logarithmic or stationary phase and in biofilms. The MICs of GaM were higher for S. aureus (375 to 2000 microg/ml) than S. epidermidis (94 to 200 microg/ml). Minimal biofilm inhibitory concentrations were 3,000 to >or=6,000 microg/ml (S. aureus) and 94 to 3,000 microg/ml (S. epidermidis). In time-kill studies, GaM exhibited a slow and dose-dependent killing, with maximal action at 24 h against S. aureus of 1.9 log(10) CFU/ml (MSSA) and 3.3 log(10) CFU/ml (MRSA) at 3x MIC and 2.9 log(10) CFU/ml (MSSE) and 4.0 log(10) CFU/ml (MRSE) against S. epidermidis at 10x MIC. In calorimetric studies, growth-related heat production was inhibited by GaM at subinhibitory concentrations; and the minimal heat inhibition concentrations were 188 to 4,500 microg/ml (MSSA), 94 to 1,500 microg/ml (MRSA), and 94 to 375 microg/ml (MSSE and MRSE), which correlated well with the MICs. Thus, calorimetry was a fast, accurate, and simple method useful for investigation of antimicrobial activity at subinhibitory concentrations. In conclusion, GaM exhibited activity against staphylococci in different growth phases, including in stationary phase and biofilms, but high concentrations were required. These data support the potential topical use of GaM, including its use for the treatment of wound infections, MRSA decolonization, and coating of implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.