995 resultados para 3.621.068
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Epitaxial bilayered thin films consisting of La0.6Sr0.4MnO3 (LSMO) and 0.7Pb(Mg1/3Nb2/3)O3â0.3PbTiO3 (PMN-PT) layers of relatively different thicknesses were fabricated on LaNiO3 coated LaAlO3 (100) single crystal substrates by pulsed laser ablation technique. The crystallinity, ferroelectric, ferromagnetic, and magnetodielectric properties have been studied for all the bilayered heterostructures. Their microstructural analysis suggested possible StranskiâKrastanov type of growth mechanism in the present case. Ferroelectric and ferromagnetic characteristics of these bilayered heterostructures over a wide range of temperatures confirmed their biferroic nature. The magnetization and ferroelectric polarization of the bilayered heterostructures were enhanced with increasing PMN-PT layer thickness owing to the effect of lattice strain. In addition, evolution of the ferroelectric and ferromagnetic properties of these heterostructures with changing thicknesses of the PMN-PT and LSMO layers indicated possible influence of several interfacial effects such as space charge, depolarization field, domain wall pinning, and spin disorder on the observed properties. Dielectric properties of these heterostructures studied over a wide range of temperatures under different magnetic field strengths suggested a possible role of elastic strain mediated magnetoelectric coupling behind the observed magnetodielectric effect in addition to the influence of rearrangement of the interfacial charge carriers under an applied magnetic field.
Resumo:
NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.
Resumo:
Digital image
Resumo:
- Objective To evaluate dietary intake impact outcomes up to 3.5 years after the NOURISH early feeding intervention (concealed allocation, assessor masked RCT). - Methods 698 first-time mothers with healthy term infants were allocated to receive anticipatory guidance on protective feeding practices or usual care. Outcomes were assessed at 2, 3.7 and 5 years (3.5 years post-intervention). Dietary intake was assessed by 24-hour recall and Child Dietary Questionnaire. Mothers completed a food preference questionnaire and Children’s Eating Behaviour Questionnaire. Linear mixed models assessed group, time and time x group effects. - Results There were no group or time x group effects for fruit, vegetables, discretionary food and non-milk sweetened beverages intake. Intervention children showed a higher preference for fruits (74.6% vs 69.0% liked, P<.001), higher Child Dietary Questionnaire score for fruit and vegetables (15.3 vs 14.5, target>18, P=0.03), lower food responsiveness (2.3 vs 2.4, of maximum 5, P=.04) and higher satiety responsiveness (3.1 vs 3.0, of maximum 5, P=.04). - Conclusions Compared to usual care, an early feeding intervention providing anticipatory guidance regarding positive feeding practices led to small improvements in child dietary score, food preferences and eating behaviours up to 5 years of age, but not in dietary intake measured by 24-hour recall.
Resumo:
1-Acyl-2-succinyl glycero-3-phosphorylcholine (GPC) was synthesized and its properties described. Although 1-acyl-2-succinyl GPC is a good substrate for succinate dehydrogenase, experiments on the incorporation of [2,3-14C]succinate into mitochondrial lipids gave no evidence to indicate that it is an intermediate in the enzymic oxidation of succinate to fumarate, as has been suggested earlier.
Resumo:
Complexes of lanthanide iodides with 3-methylpyridine-1-oxide of the formula Ln(3-MePyO)8I3.xH2O where x = 0 for Ln = La and Tb, x = 1 for Ln = Pr, and x = 2 for Ln = Nd, Sm, Dy, Yb, and Y have been prepared and characterized by chemical analyses, conductance, infrared, proton nmr, and DTA data. Infrared and proton nmr data have been interpreted in terms of the coordination of the ligand to the metal ion through the oxygen of the N—O group. Proton nmr spectrum of the Yb(III) complex is indicative of a restricted rotation of the pyridine ring about the N—O bond.
Resumo:
The interaction of six macrocyclic polyethers with 1, 3, 5-trinitrobenzene has been studied by spectroscopic methods. The association constants have been evaluated by1HMR chemical shift method. There is evidence that major contribution to the interaction isvia n andπ electrons. The donor strengths of the polyethers have been evaluated.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.