941 resultados para 3-D geometry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate the relationship between pupil diameter and refractive error and how refractive correction, target luminance, and accommodation modulate this relationship. Methods: Sixty emmetropic, myopic, and hyperopic subjects (age range, 18 to 35 years) viewed an illuminated target (luminance: 10, 100, 200, 400, 1000, 2000, and 4100 cd/m2) within a Badal optical system, at 0 diopters (D) and −3 D vergence, with and without refractive correction. Refractive error was corrected using daily disposable contact lenses. Pupil diameter and accommodation were recorded continuously using a commercially available photorefractor. Results: No significant difference in pupil diameter was found between the refractive groups at 0 D or −3 D target vergence, in the corrected or uncorrected conditions. As expected, pupil diameter decreased with increasing luminance. Target vergence had no significant influence on pupil diameter. In the corrected condition, at 0 D target vergence, the accommodation response was similar in all refractive groups. At −3 D target vergence, the emmetropic and myopic groups accommodated significantly more than the hyperopic group at all luminance levels. There was no correlation between accommodation response and pupil diameter or refractive error in any refractive group. In the uncorrected condition, the accommodation response was significantly greater in the hyperopic group than in the myopic group at all luminance levels, particularly for near viewing. In the hyperopic group, the accommodation response was significantly correlated with refractive error but not pupil diameter. In the myopic group, accommodation response level was not correlated with refractive error or pupil diameter. Conclusions: Refractive error has no influence on pupil diameter, irrespective of refractive correction or accommodative demand. This suggests that the pupil is controlled by the pupillary light reflex and is not driven by retinal blur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the main achievements of the author’s PhD dissertation. The work is dedicated to mathematical and semi-empirical approaches applied to the case of Bulgarian wildland fires. After the introductory explanations, short information from every chapter is extracted to cover the main parts of the obtained results. The methods used are described in brief and main outcomes are listed. ACM Computing Classification System (1998): D.1.3, D.2.0, K.5.1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the main concepts of a project under development concerning the analysis process of a scene containing a large number of objects, represented as unstructured point clouds. To achieve what we called the "optimal scene interpretation" (the shortest scene description satisfying the MDL principle) we follow an approach for managing 3-D objects based on a semantic framework based on ontologies for adding and sharing conceptual knowledge about spatial objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): D.2.11, D.1.3, D.3.1, J.3, C.2.4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulated gate bipolar transistor (IGBT) modules are important safety critical components in electrical power systems. Bond wire lift-off, a plastic deformation between wire bond and adjacent layers of a device caused by repeated power/thermal cycles, is the most common failure mechanism in IGBT modules. For the early detection and characterization of such failures, it is important to constantly detect or monitor the health state of IGBT modules, and the state of bond wires in particular. This paper introduces eddy current pulsed thermography (ECPT), a nondestructive evaluation technique, for the state detection and characterization of bond wire lift-off in IGBT modules. After the introduction of the experimental ECPT system, numerical simulation work is reported. The presented simulations are based on the 3-D electromagnetic-thermal coupling finite-element method and analyze transient temperature distribution within the bond wires. This paper illustrates the thermal patterns of bond wires using inductive heating with different wire statuses (lifted-off or well bonded) under two excitation conditions: nonuniform and uniform magnetic field excitations. Experimental results show that uniform excitation of healthy bonding wires, using a Helmholtz coil, provides the same eddy currents on each, while different eddy currents are seen on faulty wires. Both experimental and numerical results show that ECPT can be used for the detection and characterization of bond wires in power semiconductors through the analysis of the transient heating patterns of the wires. The main impact of this paper is that it is the first time electromagnetic induction thermography, so-called ECPT, has been employed on power/electronic devices. Because of its capability of contactless inspection of multiple wires in a single pass, and as such it opens a wide field of investigation in power/electronic devices for failure detection, performance characterization, and health monitoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic Solar Cells (OSCs) represent a photovoltaic technology with multiple interesting application properties. However, the establishment of this technology into the market is subject to the achievement of operational lifetimes appropriate to their application purposes. Thus, comprehensive understanding of the degradation mechanisms occurring in OSCs is mandatory in both selecting more intrinsically stable components and/or device architectures and implementing strategies that mitigate the encountered stability issues. Inverted devices can suffer from mechanical stress and delamination at the interface between the active layer, e.g. poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), and the hole transport layer, e.g. poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT:PSS). This work proposes the incorporation of a thin adhesive interlayer, consisting of a diblock copolymer composed of a P3HT block and a thermally-triggerable, alkyl-protected PSS block. In this context, the synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) with controlled molar mass and low dispersity (Ð ≤ 1.50) via Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation has been extensively studied. Subsequently, Atomic Force Microscopy (AFM) was explored to characterise the thermal deprotection of P3HT-b-PNSS thin layers to yield amphiphilic P3HT-b-PSS, indicating that surface deprotection prior to thermal treatment could occur. Finally, structural variation of the alkyl protecting group in PSS allowed reducing the thermal treatment duration from 3 hours (P3HT-b-PNSS) to 45 minutes for the poly(isobutyl p-styrene sulfonate) (PiBSS) analogous copolymer. Another critical issue regarding the stability of OSCs is the sunlight-driven chemical degradation of the active layer. In the study herein, the combination of experimental techniques and theoretical calculations has allowed identification of the structural weaknesses of poly[(4,4’- bis(2-ethylhexyl) dithieno [3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5’-diyl], Si-PCPDTBT, upon photochemical treatment in air. Additionally, the study of the relative photodegradation rates in air of a series of polymers with systematically modified backbones and/or alkyl side chains has shown no direct correlation between chemical structure and stability. It is proposed instead that photostability is highly dependent on the crystalline character of the deposited films. Furthermore, it was verified that photostability of blends based on these polymers is dictated by the (de)stabilising effect that [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has over each polymer. Finally, a multiscale analysis on the degradation of solar cells based on poly[4,4' bis(2- ethylhexyl) dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-[2,5 bis(3 tetradecylthiophen 2-yl)thiazole[5,4-d]thiazole)-1,8-diyl] and PCBM, indicated that by judicious selection of device layers, architectures, and encapsulation materials, operational lifetimes up to 3.3 years with no efficiency losses can be successfully achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation establishes the foundation for a new 3-D visual interface integrating Magnetic Resonance Imaging (MRI) to Diffusion Tensor Imaging (DTI). The need for such an interface is critical for understanding brain dynamics, and for providing more accurate diagnosis of key brain dysfunctions in terms of neuronal connectivity. ^ This work involved two research fronts: (1) the development of new image processing and visualization techniques in order to accurately establish relational positioning of neuronal fiber tracts and key landmarks in 3-D brain atlases, and (2) the obligation to address the computational requirements such that the processing time is within the practical bounds of clinical settings. The system was evaluated using data from thirty patients and volunteers with the Brain Institute at Miami Children's Hospital. ^ Innovative visualization mechanisms allow for the first time white matter fiber tracts to be displayed alongside key anatomical structures within accurately registered 3-D semi-transparent images of the brain. ^ The segmentation algorithm is based on the calculation of mathematically-tuned thresholds and region-detection modules. The uniqueness of the algorithm is in its ability to perform fast and accurate segmentation of the ventricles. In contrast to the manual selection of the ventricles, which averaged over 12 minutes, the segmentation algorithm averaged less than 10 seconds in its execution. ^ The registration algorithm established searches and compares MR with DT images of the same subject, where derived correlation measures quantify the resulting accuracy. Overall, the images were 27% more correlated after registration, while an average of 1.5 seconds is all it took to execute the processes of registration, interpolation, and re-slicing of the images all at the same time and in all the given dimensions. ^ This interface was fully embedded into a fiber-tracking software system in order to establish an optimal research environment. This highly integrated 3-D visualization system reached a practical level that makes it ready for clinical deployment. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the current age of fast-depleting conventional energy sources, top priority is given to exploring non-conventional energy sources, designing highly efficient energy storage systems and converting existing machines/instruments/devices into energy-efficient ones. ‘Energy efficiency’ is one of the important challenges for today’s scientific and research community, worldwide. In line with this demand, the current research was focused on developing two highly energy-efficient devices – field emitters and Li-ion batteries, using beneficial properties of carbon nanotubes (CNT). Interface-engineered, directly grown CNTs were used as cathode in field emitters, while similar structure was applied as anode in Li-ion batteries. Interface engineering was found to offer minimum resistance to electron flow and strong bonding with the substrate. Both field emitters and Li-ion battery anodes were benefitted from these advantages, demonstrating high energy efficiency. Field emitter, developed during this research, could be characterized by low turn-on field, high emission current, very high field enhancement factor and extremely good stability during long-run. Further, application of 3-dimensional design to these field emitters resulted in achieving one of the highest emission current densities reported so far. The 3-D field emitter registered 27 times increase in current density, as compared to their 2-D counterparts. These achievements were further followed by adding new functionalities, transparency and flexibility, to field emitters, keeping in view of current demand for flexible displays. A CNT-graphene hybrid structure showed appreciable emission, along with very good transparency and flexibility. Li-ion battery anodes, prepared using the interface-engineered CNTs, have offered 140% increment in capacity, as compared to conventional graphite anodes. Further, it has shown very good rate capability and an exceptional ‘zero capacity degradation’ during long cycle operation. Enhanced safety and charge transfer mechanism of this novel anode structure could be explained from structural characterization. In an attempt to progress further, CNTs were coated with ultrathin alumina by atomic layer deposition technique. These alumina-coated CNT anodes offered much higher capacity and an exceptional rate capability, with very low capacity degradation in higher current densities. These highly energy efficient CNT based anodes are expected to enhance capacities of future Li-ion batteries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the role of photochemical and microbial processes in contributing to the transformation of dissolved organic matter (DOM) derived from various plants that dominate the Florida Everglades. Plant-derived DOM leachate samples were exposed to photochemical and microbial degradation and the optical, chemical, and molecular weight characteristics measured over time. Optical parameters such as the synchronous fluorescence intensity between 270 and 290 nm (Fnpeak I), a strong indicator of protein and/or polyphenol content, decreased exponentially in all plant leachate samples, with microbial decay constants ranging from 21.0 d21 for seagrass to 20.11 d21 for mangrove (half-life [t1/2] 5 0.7–6.3 d). Similar decreases in polyphenol content and dissolved organic carbon (DOC) concentration also occurred but were generally an order of magnitude lower or did not change significantly over time. The initial molecular weight composition was reflected in the rate of Fnpeak I decay and suggests that plantderived DOM with a large proportion of high molecular weight structures, such as seagrass derived DOM, contain high concentrations of easily microbially degradable proteinaceous components. For samples exposed to extended simulated solar radiation, polyphenol and Fnpeak I photochemical decay constants were on average 20.7 d21 (t1/2 1.0 d). Our data suggest that polyphenol structures of plant-derived DOM are particularly sensitive to photolysis, whereas high molecular weight protein-like structures are degraded primarily through physical–chemical and microbial processes. Furthermore, microbial and physical processes initiated the formation of recalcitrant, highly colored high molecular weight polymeric structures in mangrove-derived DOM. Thus, partial, biogeochemical transformation of plant-derived DOM from coastal areas is rapid and is likely to influence carbon and nutrient cycling, especially in areas dominated by seagrass and mangrove forests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. ^ One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield “Model HRTFs” that can create elevation effects. ^ Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this approach. The model is simple, yet versatile because it relies on easy to measure parameters to create an individualized HRTF. This low-order parameterized model also reduces the computational and storage demands, while maintaining a sufficient number of perceptually relevant spectral cues. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogeologic variables controlling groundwater exchange with inflow and flow-through lakes were simulated using a three-dimensional numerical model (MODFLOW) to investigate and quantify spatial patterns of lake bed seepage and hydraulic head distributions in the porous medium surrounding the lakes. Also, the total annual inflow and outflow were calculated as a percentage of lake volume for flow-through lake simulations. The general exponential decline of seepage rates with distance offshore was best demonstrated at lower anisotropy ratio (i.e., Kh/Kv = 1, 10), with increasing deviation from the exponential pattern as anisotropy was increased to 100 and 1000. 2-D vertical section models constructed for comparison with 3-D models showed that groundwater heads and seepages were higher in 3-D simulations. Addition of low conductivity lake sediments decreased seepage rates nearshore and increased seepage rates offshore in inflow lakes, and increased the area of groundwater inseepage on the beds of flow-through lakes. Introduction of heterogeneity into the medium decreased the water table and seepage ratesnearshore, and increased seepage rates offshore in inflow lakes. A laterally restricted aquifer located at the downgradient side of the flow-through lake increased the area of outseepage. Recharge rate, lake depth and lake bed slope had relatively little effect on the spatial patterns of seepage rates and groundwater exchange with lakes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ. Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front. Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1-100 pmol/cm**3/d) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence suggests that inactivity during a hospital stay is associated with poor health outcomes in older medical inpatients. We aimed to estimate the associations of average daily step-count (walking) in hospital with physical performance and length of stay in this population. Medical in-patients aged ⩾65 years, premorbidly mobile, with an anticipated length of stay ⩾3 d, were recruited. Measurements included average daily step-count, continuously recorded until discharge, or for a maximum of 7 d (Stepwatch Activity Monitor); co-morbidity (CIRS-G); frailty (SHARE F-I); and baseline and end-of-study physical performance (short physical performance battery). Linear regression models were used to estimate associations between step-count and end-of-study physical performance or length of stay. Length of stay was log transformed in the first model, and step-count was log transformed in both models. Similar models were used to adjust for potential confounders. Data from 154 patients (mean 77 years, SD 7.4) were analysed. The unadjusted models estimated for each unit increase in the natural log of stepcount, the natural log of length of stay decreased by 0.18 (95% CI −0.27 to −0.09). After adjustment of potential confounders, while the strength of the inverse association was attenuated, it remained significant (βlog(steps) = −0.15, 95%CI −0.26 to −0.03). The back-transformed result suggested that a 50% increase in step-count was associated with a 6% shorter length of stay. There was no apparent association between step-count and end-of-study physical performance once baseline physical performance was adjusted for. The results indicate that step-count is independently associated with hospital length of stay, and merits further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concern about the impacts of ocean acidification (OA) on ecosystem function has prompted many studies to focus on larval recruitment, demonstrating declines in settlement and early growth at elevated CO2 concentrations. Since larval settlement is often driven by particular cues governed by crustose coralline algae (CCA), it is important to determine whether OA reduces larval recruitment with specific CCA and the generality of any effects. We tested the effect of elevated CO2 on the survival and settlement of larvae from the common spawning coral Acropora selago with 3 ecologically important species of CCA, Porolithon onkodes, Sporolithon sp., and Titanoderma sp. After 3 d in no-choice laboratory assays at 447, 705, and 1214 µatm pCO2, the rates of coral settlement declined as pCO2 increased with all CCA taxa. The magnitude of the effect was highest with Titanoderma sp., decreasing by 87% from the ambient to highest CO2 treatment. In general, there were high rates of larval mortality, which were greater with the P. onkodes and Sporolithon sp. treatments (~80%) compared to the Titanoderma sp. treatment (65%). There was an increase in larval mortality as pCO2 increased, but this was variable among the CCA species. It appears that OA reduces coral settlement by rapidly altering the chemical cues associated with the CCA thalli and microbial community, and potentially by directly affecting larval viability.