940 resultados para 2G three-axis super-conducting rock magnetometer
Resumo:
This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.
Resumo:
High resolution 230Thex and 10Be and biogenic barium profiles were measured at three sediment gravity cores (length 605-850 cm) from the Weddell Sea continental margin. Applying the 230Thex dating method, average sedimentation rates of 3 cm/kyr for the two cores from the South Orkney Slope and of 2.4 cm/kyr for the core from the eastern Weddell Sea were determined and compared to delta18O and lithostratigraphic results. Strong variations in the radionuclide concentrations in the sediments resembling the glacial/interglacial pattern of the delta18O stratigraphy and the 10Be stratigraphy of high northern latitudes were used for establishing a chronostratigraphy. Biogenic Ba shows a pattern similar to the radionuclide profiles, suggesting that both records were influenced by increased paleoproductivity at the beginning of the interglacials. However, 230Thex0 fluxes (0 stands for initial) exceeding production by up to a factor of 4 suggest that sediment redistribution processes, linked to variations in bottom water current velocity, played the major role in controlling the radionuclide and biogenic barium deposition during isotope stages 5e and 1. The correction for sediment focusing makes the 'true' vertical paleoproductivity rates, deduced from the fluxes of proxy tracers like biogenic barium, much lower than previously estimated. Very low 230Thex0 concentrations and fluxes during isotope stage 6 were probably caused by rapid deposition of older, resedimented material, delivered to the Weddell Sea continental slopes by the grounded ice shelves and contemporaneous erosion of particles originating from the water column.
Resumo:
Physical and sedimentological investigations were carried out on a 14 m long gravity core and a 0.5 m long box core from 4440 m water depth off Queen Maud Land, East-Antarctica. Strongly bioturbated hemipelagic muds of predominantly terrigenous origin and a very small biogenic part build up the 'Normal-Facies'. Several sandy to silty layers are inserted in the 'Normal-Facies'. These layers are seperated by lithology, structure and the investigated parameters of this study and are interpreted as turbidites. The source area for the turbidity currents is supposed to be at the uppermost continental margin, close to the shelf break and there is evidenee for this gravity transport within the erosive Ritscher-Canyon, which extends close to the core position. The distribution of biogenic components indicates an age of 1.3 million years or more, with an average sedimentation rate of about 1 cm/1000 years. Early diagenetic proeesses caused water loss by compaction, errosion and dissolution of biogenic components and precipitation and recrystallization of manganese micronodules. Cyclic fluctuations of the sediment-parameters within the 'Normal-Facies' enable the distinction of a 'Glazial'- and an 'Interglazial'-Facies. The 'Glazial'-Facies reflects glacial sedimentary conditions and shows a dark olive gray colour, high susceptibility, low silt/clay-ratios, only a few biogenic components and the regular occurence of interrelated turbidite layers. In contrast, the 'Interglazial'-Facies is dominated by a light olive or olive-brown colour, low susceptibility, high silt/clay-ratios and an increased number of biogenic components. This facies corresponds to interglacial conditions. Three main processes are supposed to have been responsible for the observed facies changes: (1) the bottom water mass circulation, (2) the gravity transport by turbidity currents and (3) the biogenic surface production. These processes are related to the quaternary climatic changes. The extension of the ice shelves directed the gravity transport to the deep sea and the formation of Antarctic Bottom Water, which in turn influenced the silt/clay-ratios in the sediment record. Fluctuations in sea ice coverage controlled the biogenic surface production.
Resumo:
In this study we investigate the potential of organic-walled dinoflagellate cysts (dinocysts) as tools for quantifying past sea-surface temperatures (SST) in the Southern Ocean. For this purpose, a dinocyst reference dataset has been formed, based on 138 surface sediment samples from different circum-Antarctic environments. The dinocyst assemblages of these samples are composed of phototrophic (gonyaulacoid) and heterotrophic (protoperidinioid) species that provide a broad spectrum of palaeoenvironmental information. The relationship between the environmental parameters in the upper water column and the dinocyst distribution patterns of individual species has been established using the statistical method of Canonical Correspondence Analysis (CCA). Among the variables tested, summer SST appeared to correspond to the maximum variance represented in the dataset. To establish quantitative summer SST reconstructions, a Modern Analogue Technique (MAT) has been performed on data from three Late Quaternary dinocyst records recovered from locations adjacent to prominent oceanic fronts in the Atlantic sector of the Southern Ocean. These dinocyst time series exhibit periodic changes in the dinocyst assemblage during the last two glacial/interglacial-cycles. During glacial conditions the relative abundance of protoperidinioid cysts was highest, whereas interglacial conditions are characterised by generally lower cyst concentrations and increased relative abundance of gonyaulacoid cysts. The MAT palaeotemperature estimates show trends in summer SST changes following the global oxygen isotope signal and a strong correlation with past temperatures of the last 140,000 years based on other proxies. However, by comparing the dinocyst results to quantitative estimates of summer SSTs based on diatoms, radiolarians and foraminifer-derived stable isotope records it can be shown that in several core intervals the dinocyst-based summer SSTs appeared to be extremely high. In these intervals the dinocyst record seems to be highly influenced by selective degradation, leading to unusual temperature ranges and to unrealistic palaeotemperatures. We used the selective degradation index (kt-index) to determine those intervals that have been biased by selective degradation in order to correct the palaeotemperature estimates. We show that after correction the dinocyst based SSTs correspond reasonably well with other palaeotemperature estimates for this region, supporting the great potential of dinoflagellate cysts as a basis for quantitative palaeoenvironmental studies.
Resumo:
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.
Resumo:
Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological and geochemical proxies. Radiocarbon and Pb/Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~ 1,400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the "alder high" that occurred in the region ~ 4.0 cal ka BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were therefore archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.
Resumo:
lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.
Resumo:
We appreciate very helpful reviews by Dr. Martin Stokes and three anonymous reviewers and editor Dr. Richard Marston. We also appreciate the encouragement for writing this paper from Dr. Timothy Horscroft. We acknowledge support of the sponsors of the Fluvial Systems Research Group consortium, BP, BG, Chevron, ConocoPhillips and Total.
Resumo:
We appreciate very helpful reviews by Dr. Martin Stokes and three anonymous reviewers and editor Dr. Richard Marston. We also appreciate the encouragement for writing this paper from Dr. Timothy Horscroft. We acknowledge support of the sponsors of the Fluvial Systems Research Group consortium, BP, BG, Chevron, ConocoPhillips and Total.
Resumo:
Unique bimodal distributions of single crystal epitaxially grown In2O3 nanodots on silicon are shown to have excellent IR transparency greater than 87% at IR wavelengths up to 4 μm without sacrificing transparency in the visible region. These broadband antireflective nanodot dispersions are grown using a two-step metal deposition and oxidation by molecular beam epitaxy, and backscattered diffraction confirms a dominant (111) surface orientation. We detail the growth of a bimodal size distribution that facilitates good surface coverage (80%) while allowing a significant reduction in In2O3 refractive index. This unique dispersion offers excellent surface coverage and three-dimensional volumetric expansion compared to a thin film, and a step reduction in refractive index compared to bulk active materials or randomly porous composites, to more closely match the refractive index of an electrolyte, improving transparency. The (111) surface orientation of the nanodots, when fully ripened, allows minimum lattice mismatch strain between the In2O3 and the Si surface. This helps to circumvent potential interfacial weakening caused by volume contraction due to electrochemical reduction to lithium, or expansion during lithiation. Cycling under potentiodynamic conditions shows that the transparent anode of nanodots reversibly alloys lithium with good Coulombic efficiency, buffered by co-insertion into the silicon substrate. These properties could potentially lead to further development of similarly controlled dispersions of a range of other active materials to give transparent battery electrodes or materials capable of non-destructive in situ spectroscopic characterization during charging and discharging.
Resumo:
Semiconductor chip packaging has evolved from single chip packaging to 3D heterogeneous system integration using multichip stacking in a single module. One of the key challenges in 3D integration is the high density interconnects that need to be formed between the chips with through-silicon-vias (TSVs) and inter-chip interconnects. Anisotropic Conductive Film (ACF) technology is one of the low-temperature, fine-pitch interconnect method, which has been considered as a potential replacement for solder interconnects in line with continuous scaling of the interconnects in the IC industry. However, the conventional ACF materials are facing challenges to accommodate the reduced pad and pitch size due to the micro-size particles and the particle agglomeration issue. A new interconnect material - Nanowire Anisotropic Conductive Film (NW-ACF), composed of high density copper nanowires of ~ 200 nm diameter and 10-30 µm length that are vertically distributed in a polymeric template, is developed in this work to tackle the constrains of the conventional ACFs and serves as an inter-chip interconnect solution for potential three-dimensional (3D) applications.
Resumo:
A number of studies have shown that methanogens are active in the presence of sulfate under some conditions. This phenomenon is especially exemplified in carbonate sediments of the southern Australian continental margin. Three sites cored during Ocean Drilling Program (ODP) Leg 182 in the Great Australian Bight have high concentrations of microbially-generated methane and hydrogen sulfide throughout almost 500 m of sediments. In these cores, the sulfate-reducing and methanogenic zones overlap completely; that is, the usual sulfate-methane transition zone is absent. Amino acid racemization data show that the gassy sediments consist of younger carbonates than the low-gas sites. High concentrations of the reduced gases also occur in two ODP sites on the margin of the Bahamas platform, both of which have similar sedimentary conditions to those of the high-gas sites of Leg 182. Co-generation of these reduced gases results from an unusual combination of conditions, including: (1) a thick Quaternary sequence of iron-poor carbonate sediments, (2) a sub-seafloor brine, and (3) moderate amounts of organic carbon. The probable explanation for the co-generation of hydrogen sulfide and methane in all these sites, as well as in other reported environments, is that methanogens are utilizing non-competitive substrates to produce methane within the sulfate-reducing zone. Taken together, these results form the basis of a new model for sulfate reduction and methanogenesis in marine sediments. The biogeochemical end-members of the model are: (1) minimal sulfate reduction, (2) complete sulfate reduction followed by methanogenesis, and (3) overlapping sulfate reduction and methanogenesis with no transition zone.
Resumo:
Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.