854 resultados para 2D Technologies
Resumo:
The process of developing a successful stroke rehabilitation methodology requires four key components: a good understanding of the pathophysiological mechanisms underlying this brain disease, clear neuroscientific hypotheses to guide therapy, adequate clinical assessments of its efficacy on multiple timescales, and a systematic approach to the application of modern technologies to assist in the everyday work of therapists. Achieving this goal requires collaboration between neuroscientists, technologists and clinicians to develop well-founded systems and clinical protocols that are able to provide quantitatively validated improvements in patient rehabilitation outcomes. In this article we present three new applications of complementary technologies developed in an interdisciplinary matrix for acute-phase upper limb stroke rehabilitation – functional electrical stimulation, arm robot-assisted therapy and virtual reality-based cognitive therapy. We also outline the neuroscientific basis of our approach, present our detailed clinical assessment protocol and provide preliminary results from patient testing of each of the three systems showing their viability for patient use.
Resumo:
The development of emergency medical services and especially neurosurgical emergencies during recent decades has necessitated the development of novel tools. Although the gadgets that the neurosurgeon uses today in emergencies give him important help in diagnosis and treatment, we still need new technology, which has rapidly developed. This review presents the latest diagnostic tools, which offer precious help in everyday emergency neurosurgery practice. New ultrasound devices make the diagnosis of haematomas easier. In stroke, the introduction of noninvasive new gadgets aims to provide better treatment to the patient. Finally, the entire development of computed tomography and progress in radiology have resulted in innovative CT scans and angiographic devices that advance the diagnosis, treatment, and outcome of the patent. The pressure on physicians to be quick and effective and to avoid any misjudgement of the patient has been transferred to the technology, with the emphasis on developing new systems that will provide our patients with a better outcome and quality of life.
Resumo:
Individual Video Training iVT and Annotating Academic Videos AAV: two complementing technologies 1. Recording communication skills training sessions and reviewing them by oneself, with peers, and with tutors has become standard in medical education. Increasing numbers of students paired with restrictions of financial and human resources create a big obstacle to this important teaching method. 2. Everybody who wants to increase efficiency and effectiveness of communication training can get new ideas from our technical solution. 3. Our goal was to increase the effectiveness of communication skills training by supporting self, peer and tutor assessment over the Internet. Two technologies of SWITCH, the national foundation to support IT solutions for Swiss universities, came handy for our project. The first is the authentication and authorization infrastructure providing all Swiss students with a nationwide single login. The second is SWITCHcast which allows automated recording, upload and publication of videos in the Internet. Students start the recording system by entering their single login. This automatically links the video with their password. Within a few hours, they find their video password protected on the Internet. They now can give access to peers and tutors. Additionally, an annotation interface was developed. This software has free text as well as checklist annotations capabilities. Tutors as well as students can create checklists. Tutor’s checklists are not editable by students. Annotations are linked to tracks. Tracks can be private or public. Public means visible to all who have access to the video. Annotation data can be exported for statistical evaluation. 4. The system was well received by students and tutors. Big numbers of videos were processed simultaneously without any problems. 5. iVT http://www.switch.ch/aaa/projects/detail/UNIBE.7 AAV http://www.switch.ch/aaa/projects/detail/ETHZ.9
Resumo:
Digital TV offers of 200 channels and 500 video-on-demand films, podcasting, mobile television, a new web blog being created every two seconds - these are some of the factual elements depicting contemporary audiovisual media in the digital environment. The present article looks into some of these technological advances and sketches their implications for the markets of media content, in particular as newly emerging patterns of consumer and business behaviour are concerned. Ultimately, it puts forward the question of whether the existing audiovisual media regulatory models, which are still predominantly analogue-based, have been rendered obsolete by the transformed (and continually transforming) digital environment.
Resumo:
Digital technologies have often been perceived as imperilling traditional cultural expressions (TCE). This angst has interlinked technical and socio-cultural dimensions. On the technical side, it is related to the affordances of digital media that allow, among other things, instantaneous access to information without real location constraints, data transport at the speed of light and effortless reproduction of the original without any loss of quality. In a socio-cultural context, digital technologies have been regarded as the epitome of globalisation forces - not only driving and deepening the process of globalisation itself but also spreading its effects. The present article examines the validity of these claims and sketches a number of ways in which digital technologies may act as benevolent factors. We illustrate in particular that some digital technologies can be instrumentalised to protect TCE forms, reflecting more appropriately the specificities of TCE as a complex process of creation of identity and culture. The article also seeks to reveal that digital technologies - and more specifically the Internet and the World Wide Web - have had a profound impact on the ways cultural content is created, disseminated, accessed and consumed. We argue that this environment may have generated various opportunities for better accommodating TCE, especially in their dynamic sense of human creativity.
Resumo:
New technologies, in particular those stemming from digitization, allow amongst other things the production of perfect copies, instantaneous and ubiquitous distribution of and easy access to information with no real location restrictions. The effects of these technological advances have largely been perceived as negative for the protection of Traditional Cultural Expressions (TCE), both because of the peculiarities of the digital networked environment and because of the lack of appropriate intellectual property protection models for TCE. The purpose of this article is, while accounting for the diversity and complexity of issues related to TCE, to reveal a more positive side of digital technologies. It shows the potential of these to be proactively applied and the further reaching possibilities for designing an efficient multi-level and multi-faceted toolbox for the protection and promotion of TCE in the digital ecology.
Resumo:
We study the phase diagram of the two-dimensional N=1 Wess-Zumino model on the lattice using Wilson fermions and the fermion loop formulation. We give a complete nonperturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase, we observe the emergence of the Goldstino particle.
Resumo:
arr. by Joachim Kurantmann
Resumo:
Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.
Resumo:
In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).
Resumo:
Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). In this chapter, we present an alternative technique that can reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model. Cadaveric studies are conducted to verify the reconstruction accuracy by comparing the surface models reconstructed from a single lateral fluoroscopic image to the ground truth data from 3D CT segmentation. A mean reconstruction error between 0.7 and 1.4 mm was found.
Resumo:
In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.