988 resultados para 291503 Biomaterials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of animals have evolved to produce silk-based composite materials for a variety of task-specific applications. The review initially focuses on the composite structure of silk fibers produced naturally by silkworms and spiders, followed by the preparation and applications of man-made composite materials (including fibers, films, foams, gels and particulates) incorporating silk proteins in combination with other polymers (both natural and synthetic) and/or inorganic particles. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A huge variety of proteins are able to form fibrillar structures(1), especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand(2,3). Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal(4,5) and carboxy-terminal(6) domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation(7) initiated by changes in ionic composition(8,9) and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation(10-14). However, despite recent structural data(15), little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural spider silk fibers have impressive mechanical properties (outperforming many man-made fibers) and are, moreover, biocompatible, biodegradable, and produced under benign conditions (using water as a solvent at ambient temperature). The problems associated with harvesting natural spider silks inspired us to devise a method to produce spider silk-like proteins biotechnologically (the first subject tackled in this highlight); we subsequently discuss their processing into various materials morphologies, and some potential technical and biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silks are protein-based fibers made by arthropods for a variety of task-specific applications. In this article, we review the key features of silk proteins. This article initially focuses on the structure and function of silk proteins produced naturally by silkworms and spiders, followed by the biological and technical processing of silk proteins into a variety of morphologies (including capsules, fibers, films, foams, gels and spheres). Finally, we highlight the potential applications of silk-based materials. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the synthesis of dendrons containing a spermine unit at their focal point. The dendritic branching is based on L-lysine building blocks, and has terminal oligo(ethyleneglycol) units on the surface. As a consequence of the solubilising surface groups, these dendrons have high solubility in solvents with widely different polarities (e.g., dichloromethane and water). The protonated spermine unit at the focal point is an effective anion binding fragment and, as such, these dendrons are able to bind to polyanions. This paper demonstrates that polyanions can be bound in both dichloromethane (using a dye solubilisation assay) and in water (competitive ATP binding assay). In organic media the dendritic branching appears to have a pro-active effect on the solubilisation of the dye, with more dye being solubilised by higher generations of dendron. On the other hand, in water the degree of branching has no impact on the anion binding process. We propose that in this case, the spermine unit is effectively solvated by the bulk solvent and the dendritic branching does not need to play an active role in assisting solubility. Dendritic effects on anion binding have therefore been elucidated in different solvents. The dendritic branching plays a pro-active role in providing the anion binding unit with good solubility in apolar solvent media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates a series of dendrons based on the Newkome dendritic scaffold that displays a naturally occurring polyamine (spermine) on their surface. These dendrons have previously been shown to interact with DNA in a generation dependent manner with the more highly branched dendrons exhibiting a strong multivalency effect for the spermine surface groups. In this paper, we investigate the ability of these dendrons to transfect DNA into cells (human breast carcinoma cells, MDA-MB-231, and murine myoblast cells, C2C12) as determined by the luciferase assay. Although the dendrons are unable to transfect DNA in their own right, they are capable of delivering DNA in vitro when administered with chloroquine, which assists with escape from endocytic vesicles. The cytotoxicity of the dendrons was determined using the XTT assay, and it was shown that the dendrons were nontoxic either alone or in the presence of DNA. However, when administered with DNA and chloroquine, the most highly branched dendron did exhibit some cytotoxicity. This paper elucidates the relationship between in vitro transfection efficiency and toxicity. While transfection efficiencies are modest, the low toxicity of the dendrons, both in their own right, and in the presence of DNA, provides encouragement that this type of building block, which has a relatively high affinity for DNA, will provide a useful starting point for the further synthetic development of more effective gene transfection agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous core/polymer shell microcapsules with mommuclear and polynuclear core morphologies have been formed by internal phase separation from water-in-oil emulsions. The water-in-oil emulsions were prepared with the shell polymer dissolved in the aqueous phase by adding a low boiling point cosolvent. Subsequent removal of this cosolvent (by evaporation) leads to phase separation of the polymer and, if the spreading conditions are correct, formation of a polymer shell encapsulating the aqueous core. Poly(tetrahydrofuran) (PTHF) shell/aqueous core microcapsules, with a single (mononuclear) core, have been prepared, but the low T-g (-84 degreesC) of PTHF makes characterization of the particles more difficult. Poly(methyl methacrylate) and poly(isobutyl methacrylate) have higher T-g values (105 and 55 degreesC, respectively) and can be dissolved in water at sufficiently high acetone concentrations, but evaporation of the acetone from the emulsion droplets in these cases mostly resulted in polynuclear capsules, that is, having cores with many very small water droplets contained within the polymer matrix. Microcapsules with fewer, larger aqueous droplets in the core could be produced by reducing the rate of evaporation of the acetone. A possible mechanism for the formation of these polynuclear cores is suggested. These microcapsules were prepared dispersed in an oil-continuous phase. They could, however, be successfully transferred to a water-continuous phase, using a simple centrifugation technique. In this way, microcapsules with aqueous cores, dispersed in an aqueous medium, could be made. It would appear that a real challenge with the water-core systems, compared to the previous oil-core systems, is to obtain the correct order of magnitude of the three interfacial tensions, between the polymer, the aqueous phase, and the continuous oil phase; these control the spreading conditions necessary to produce shells rather than "acorns".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The application of light as a stimulus in pharmaceutical systems and the associated ability to provide precise spatiotemporal control over location, wavelength and intensity, allowing ease of external control independent of environmental conditionals, has led to its increased use. Of particular note is the use of light with photosensitisers.

Areas covered: Photosensitisers are widely used in photodynamic therapy to cause a cidal effect towards cells on irradiation due to the generation of reactive oxygen species. These cidal effects have also been used to treat infectious diseases. The effects and benefits of photosensitisers in the treatment of such conditions are still being developed and further realised, with the design of novel delivery strategies. This review provides an overview of the realisation of the pharmaceutically relevant uses of photosensitisers, both in the context of current research and in terms of current clinical application, and looks to the future direction of research.

Expert opinion: Substantial advances have been and are being made in the use of photosensitisers. Of particular note are their antimicrobial applications, due to absence of resistance that is so frequently associated with conventional treatments. Their potency of action and the ability to immobilise to polymeric supports is opening a wide range of possibilities with great potential for use in healthcare infection prevention strategies.

Relevância:

10.00% 10.00%

Publicador: