839 resultados para 280505 Data Security
Resumo:
Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.
Resumo:
It is commonly accepted that wet roads have higher risk of crash than dry roads; however, providing evidence to support this assumption presents some difficulty. This paper presents a data mining case study in which predictive data mining is applied to model the skid resistance and crash relationship to search for discernable differences in the probability of wet and dry road segments having crashes based on skid resistance. The models identify an increased probability of wet road segments having crashes for mid-range skid resistance values.
Resumo:
The Comprehensive Australian Study of Entrepreneurial Emergence (CAUSEE) is a research programme that aims to uncover the factors that initiate, hinder and facilitate the process of emergence of new economic activities and organizations. It is widely acknowledged that entrepreneurship is one of the most important forces shaping changes in a country’s economic landscape (Baumol 1968; Birch 1987; Acs 1999). An understanding of the process by which new economic activity and business entities emerge is vital (Gartner 1993; Sarasvathy 2001). An important development in the study of ‘nascent entrepreneurs’ and ‘firms in gestation’ was the Panel Study of Entrepreneurial Dynamics (PSED) (Gartner et al. 2004) and its extensions in Argentina, Canada, Greece, the Netherlands, Norway and Sweden. Yet while PSED I is an important first step towards systematically studying new venture emergence, it represents just the beginning of a stream of nascent venture studies – most notably PSED II is currently being undertaken in the US (2005– 10) (Reynolds and Curtin 2008).
Resumo:
Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.
Resumo:
Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.
Resumo:
This paper describes the characterisation for airborne uses of the public mobile data communication systems known broadly as 3G. The motivation for this study was to explore how this mature public communication systems could be used for aviation purposes. An experimental system was fitted to a light aircraft to record communication latency, line speed, RF level, packet loss and cell tower identifier. Communications was established using internet protocols and connection was made to a local server. The aircraft was flown in both remote and populous areas at altitudes up to 8500ft in a region located in South East Queensland, Australia. Results show that the average airborne RF levels are better than those on the ground by 21% and in the order of -77 dbm. Latencies were in the order of 500 ms (1/2 the latency of Iridium), an average download speed of 0.48 Mb/s, average uplink speed of 0.85 Mb/s, a packet of information loss of 6.5%. The maximum communication range was also observed to be 70km from a single cell station. The paper also describes possible limitations and utility of using such a communications architecture for both manned and unmanned aircraft systems.
Resumo:
This thesis argues that in order to establish a sound information security culture it is necessary to look at organisation's information security systems in a socio- technical context. The motivation for this research stems from the continuing concern of ineffective information security in organisations, leading to potentially significant monetary losses. It is important to address both technical and non- technical aspects when dealing with information security management. Culture has been identified as an underlying determinant of individuals' behaviour and this extends to information security culture, particularly in developing countries. This research investigates information security culture in the Saudi Arabia context. The theoretical foundation for the study is based on organisational and national culture theories. A conceptual framework for this study was constructed based on Peterson and Smith's (1997) model of national culture. This framework guides the study of national, organisational and technological values and their relationships to the development of information security culture. Further, the study seeks to better understand how these values might affect the development and deployment of an organisation's information security culture. Drawing on evidence from three exploratory case studies, an emergent conceptual framework was developed from the traditional human behaviour and the social environment perspectives used in social work, This framework contributes to in- formation security management by identifying behaviours related to four modes of information security practice. These modes provide a sound basis that can be used to evaluate individual organisational members' behaviour and the adequacy of ex- isting security measures. The results confirm the plausibility of the four modes of practice. Furthermore, a final framework was developed by integrating the four modes framework into the research framework. The outcomes of the three case stud- ies demonstrate that some of the national, organisational and technological values have clear impacts on the development and deployment of organisations' informa- tion security culture. This research, by providing an understanding the in uence of national, organi- sational and technological values on individuals' information security behaviour, contributes to building a theory of information security culture development within an organisational context. The research reports on the development of an inte- grated information security culture model that highlights recommendations for developing an information security culture. The research framework, introduced by this research, is put forward as a robust starting point for further related work in this area.
Resumo:
When an organisation becomes aware that one of its products may pose a safety risk to customers, it must take appropriate action as soon as possible or it can be held liable. The ability to automatically trace potentially dangerous goods through the supply chain would thus help organisations fulfill their legal obligations in a timely and effective manner. Furthermore, product recall legislation requires manufacturers to separately notify various government agencies, the health department and the public about recall incidents. This duplication of effort and paperwork can introduce errors and data inconsistencies. In this paper, we examine traceability and notification requirements in the product recall domain from two perspectives: the activities carried out during the manufacturing and recall processes and the data collected during the enactment of these processes. We then propose a workflow-based coordination framework to support these data and process requirements.
Resumo:
Monitoring and assessing environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods of time. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data effectively and efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
We investigate known security flaws in the context of security ceremonies to gain an understanding of the ceremony analysis process. The term security ceremonies is used to describe a system of protocols and humans which interact for a specific purpose. Security ceremonies and ceremony analysis is an area of research in its infancy, and we explore the basic principles involved to better understand the issues involved.We analyse three ceremonies, HTTPS, EMV and Opera Mini, and use the information gained from the experience to establish a list of typical flaws in ceremonies. Finally, we use that list to analyse a protocol proven secure for human use. This leads to a realisation of the strengths and weaknesses of ceremony analysis.
Resumo:
Participatory sensing enables collection, processing, dissemination and analysis of environmental sensory data by ordinary citizens, through mobile devices. Researchers have recognized the potential of participatory sensing and attempted applying it to many areas. However, participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data quality has become a significant issue. This study proposes using reputation management to classify the gathered data and provide useful information for campaign organizers and data analysts to facilitate their decisions.