969 resultados para 20S-15N
Resumo:
Sediment records of the stable isotopic composition of N (d15N) show light d15N values at several sites in the proto-North Atlantic during Oceanic Anoxic Event 2 (OAE 2) at the Cenomanian-Turonian transition (~94 Ma). The low d15N during the event is generally attributed to an increase in N2-fixation and incomplete uptake of ammonium for phytoplankton growth. A compilation of all reliable data for the proto North-Atlantic during OAE 2 demonstrates that the most pronounced negative shift in d15N from pre-OAE 2 to OAE 2 occurs in the open ocean, but with d15N never lower than -3 ppm. Using a box model of N cycling for the proto-North Atlantic during OAE 2, we show that N2-fixation is a major contributor to the d15N signal, especially in the open ocean. Incomplete uptake of ammonium for phytoplankton growth is important in regions dominated by downwelling, with lateral transport of ammonium acting as a major source. In the southern proto-North Atlantic, where bottom waters were euxinic, the light d15N signature is largely explained by upwelling of ammonium . Our study provides an overview of regional differences in d15N in the proto-North Atlantic and highlights the role of lateral exchange of water and nutrients, in addition to local biogeochemical processes, in determining d15N values of OAE 2 sediments.
Resumo:
Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the d15N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.