967 resultados para 121-1
Resumo:
We investigate the mechanics of slope failures on the Nankai accretionary complex offshore Japan in the vicinity of a major out-of-sequence thrust fault (termed the "megasplay"). Incorporating laboratory-measured shear strength of slope sediments sampled during Integrated Ocean Drilling Project (IODP) Expeditions 315 and 316 with local seafloor slope angles from bathymetric data and constraints on in-situ effective stress conditions from drilling, we find that slopes in the study area are stable and submarine landslides are not expected to occur under static conditions. In order to assess the possibility of slope failure triggered by coseismic rupture of the megasplay fault, we use empirical relations for strong ground motion attenuation from earthquakes with Mw 6-9. We find that the slope sediments should be stable based on computations from one model, developed from a catalog of worldwide subduction zone earthquakes (Youngs et al., 1997, doi:10.1785/gssrl.68.1.58). However, using a different model developed primarily from a catalog of crustal earthquakes in Japan (Kanno et al., 2006, doi:10.1785/0120050138), we find that slopes should be unstable for earthquakes 8 <= Mw <= 9, and possibly unstable for events with 6 <= Mw < 8, depending on the proximity of rupture to the seafloor. Considering limitations of the models and geologic observations of slope failure recurrence, the true slope stability is likely to be in between the predictions of the two models, and we suggest that it may be modulated by long-term pore pressure fluctuations.
Resumo:
Shipboard analysis of the 1183-m sedimentary section recovered at Site 918 in the Irminger Basin during Ocean Drilling Program Leg 152 revealed material of glacial origin (diamictons, ice-rafted debris (IRD) and dropstones) as deep as 543 m below sea floor (bsf). The sediment containing the deepest dropstone was biostratigraphically dated shipboard as approximately 7 Ma, pushing back the date for the onset of glaciation on southern Greenland by 5 Ma. Thin layers of fine sand were found as much as 60 m deeper in the core, raising the possibility of an even earlier date for glaciation. To determine the sedimentary history of these deeper sand layers, the surface textures on quartz grains from eleven cores bracketing the interval of interest were analyzed by scanning electron microscope. The results suggest that the grains in the 60-m interval below the deepest dropstone have a glacial history. At that level, an 11 -Ma Sr-isotope date was obtained from planktonic foraminifers. This late Miocene timing is supported biostratigraphically by both nannofossil and foraminifer assemblages, indicating a new minimum age for the onset of glaciation on southern Greenland and in the North Atlantic.
Resumo:
The influence of biogenic opal sediment input (mainly diatom skeletons) on the fluorine budget of marine sediments will be shown for 24 sampling stations of the antarctic regions of Bransfield Strait, Powell Basin, South Orkney Plateau and northwestern Weddell Sea. 4 bulk samples, one from each sedimentation area, contain 9 to 28 wt.-% of biogenic opal , the clay fraction of the 24 samples investigated have 2 to 82 wt.-%. The fluorine concentration in the amorphous biogenic component is 15 ppm. 300 to 800 ppm of fluorine were measured in the clay fractions, 330 to 920 ppm in their lithogenic components. Biogenic opal causes a decrease in fluorine concentration of the sediment by a considerable amount: 6 to 56 % relative to the clay fraction, due to the proportions involved. Biogenic opal is therefore taken into account as a 'diluting' factor for the fluorine budget in marine sediments.
Resumo:
We have analyzed the Nd isotopic composition of both ancient seawater and detrital material from long sequences of carbonated oozes of the South Indian Ocean which are ODP Site 756 (Ninety East Ridge (-30°S), 1518 m water depth) and ODP Site 762 (Northwest Australian margin, 1360 m water depth). The measurements indicate that the epsilon-Nd changes in Indian seawater over the last 35 Ma result from changes in the oceanic circulation, large volcanic and continental weathering Nd inputs. This highlights the diverse nature of those controls and their interconnections in a small area of the ocean. These new records combined with those previously obtained at the equatorial ODP Sites 757 and 707 in the Indian Ocean (Gourlan et al., 2008, doi:10.1016/j.epsl.2007.11.054) established that the distribution of intermediate seawater epsilon-Nd was uniform over most of the Indian Ocean from 35 Ma to 10 Ma within a geographical area extending from 40°S to the equator and from -60°E to 120°E. However, the epsilon-Nd value of Indian Ocean seawater which kept an almost constant value (at about -7 to -8) from 35 to 15 Ma rose by 3 epsilon-Nd units from 15 to 10 Ma. This sharp increase has been caused by a radiogenic Nd enrichment of the water mass originating from the Pacific flowing through the Indonesian Passage. Using a two end-members model we calculated that the Nd transported to the Indian Ocean through the Indonesian Pathway was 1.7 times larger at 10 Ma than at 15 Ma. The Nd isotopic composition of ancient seawater and that of the sediment detrital component appear to be strongly correlated for some specific events. A first evidence occurs between 20 and 15 Ma with two positive spikes recorded in both epsilon-Nd signals that are clearly induced by a volcanic crisis of, most likely, the St. Paul hot-spot. A second evidence is the very large epsilon-Nd decrease recorded at ODP Sites 756 and 762 during the past 10 Ma which has never been previously observed. The synchronism between the epsilon-Nd decrease in seawater from 10 to 5 Ma and evidences of desertification in the western part of the nearly Australian continent suggests enhanced weathering inputs in this ocean from this continent as a result of climatic changes.
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.