994 resultados para writing size zero
Resumo:
Analisa elementos que caracterizam os grupos de manifestação política dispersos pelas redes e mídias digitais, a partir do caso do Anonymous, grupo cuja atuação política foge aos padrões convencionais de participação, contestação e ativismo. Sugere-se para a entidade o conceito de “grupos difusos”, visto que não há liderança unificada e nem centralização de suas ações. Além disso, o grupo não possui uma política claramente definida e nem atores identificados. Conclui-se que, ao favorecer a interação e permitir o espraiamento de mútuos padrões comportamentais, o grupo aparenta alcançar ainda mais cooperação do que os modelos tradicionais de manifestação política.
Resumo:
We conduct experiments to investigate the effects of different majority requirements on bargaining outcomes in small and large groups. In particular, we use a Baron-Ferejohn protocol and investigate the effects of decision rules on delay (number of bargaining rounds needed to reach agreement) and measures of "fairness" (inclusiveness of coalitions, equality of the distribution within a coalition). We find that larger groups and unanimity rule are associated with significantly larger decision making costs in the sense that first round proposals more often fail, leading to more costly delay. The higher rate of failure under unanimity rule and in large groups is a combination of three facts: (1) in these conditions, a larger number of individuals must agree, (2) an important fraction of individuals reject offers below the equal share, and (3) proposers demand more (relative to the equal share) in large groups.
Resumo:
A simple derivation based on continuum mechanics is given, which shows the surface stress is critical for yield strength at ultra-small scales. Molecular dynamics (MD) simulations with modified embedded atom method (MEAM) are employed to investigate the mechanical behaviors of single-crystalline metal nanowires under tensile loading. The calculated yield strengths increasing with the decrease of the cross-sectional area of the nanowires are in accordance with the theoretical prediction. Reorientation induced by stacking faults is observed at the nanowire edge. In addition. the mechanism of yielding is discussed in details based on the snapshots of defects evolution. The nanowires in different crystallographic orientations behave differently in stretching deformation. This study on the plastic properties of metal nanowires will be helpful to further understanding of the mechanical properties of nanomaterials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.
Resumo:
The microstructural variation near surface of nano elastic materials is analyzed based on different potentials. The atomic/molecular mechanism underlying the variation and its effect on elastic modulus are such that the nature of long-range interactions (attractive or repulsive) in the atomic/molecular potentials essentially governs the variation near surface (looser or tighter) and results in two opposite size effects (decreasing or increasing modulus) with decreasing size.
Resumo:
The learning of probability distributions from data is a ubiquitous problem in the fields of Statistics and Artificial Intelligence. During the last decades several learning algorithms have been proposed to learn probability distributions based on decomposable models due to their advantageous theoretical properties. Some of these algorithms can be used to search for a maximum likelihood decomposable model with a given maximum clique size, k, which controls the complexity of the model. Unfortunately, the problem of learning a maximum likelihood decomposable model given a maximum clique size is NP-hard for k > 2. In this work, we propose a family of algorithms which approximates this problem with a computational complexity of O(k · n^2 log n) in the worst case, where n is the number of implied random variables. The structures of the decomposable models that solve the maximum likelihood problem are called maximal k-order decomposable graphs. Our proposals, called fractal trees, construct a sequence of maximal i-order decomposable graphs, for i = 2, ..., k, in k − 1 steps. At each step, the algorithms follow a divide-and-conquer strategy based on the particular features of this type of structures. Additionally, we propose a prune-and-graft procedure which transforms a maximal k-order decomposable graph into another one, increasing its likelihood. We have implemented two particular fractal tree algorithms called parallel fractal tree and sequential fractal tree. These algorithms can be considered a natural extension of Chow and Liu’s algorithm, from k = 2 to arbitrary values of k. Both algorithms have been compared against other efficient approaches in artificial and real domains, and they have shown a competitive behavior to deal with the maximum likelihood problem. Due to their low computational complexity they are especially recommended to deal with high dimensional domains.
Resumo:
The influence of contact angle and tube radius on the capillary-driven flow for circular cylindrical tubes is studied systematically by microgravity experiments using the drop tower. Experimental results show that the velocity of the capillary flow decreases monotonically with an increase in the contact angle. However, the time-evolution of the velocity of the capillary flow is different for different sized tubes. At the beginning of the microgravity period, the capillary flow in a thinner tube moves faster than that in a thicker tube, and then the latter overtakes the former. Therefore, there is an intersection between the curves of meniscus velocity vs microgravity time for two differently sized tubes. In addition, for two given sized tubes this intersection is delayed when the contact angle increases. The experimental results are analyzed theoretically and also supported by numerical computations.
Resumo:
Estimates of dolphin school sizes made by observers and crew members aboard tuna seiners or by observers on ship or aerial surveys are important components of population estimates of dolphins which are involved in the yellowfin tuna fishery in the eastern Pacific. Differences in past estimates made from tuna seiners and research ships and aircraft have been noted by Brazier (1978). To compare various methods of estimating dolphin school sizes a research cruise was undertaken with the following major objectives: 1) compare estimates made by observers aboard a tuna seiner and in the ship's helicopter, from aerial photographs, and from counts made at the backdown channel, 2) compare estimates of observers who are told the count of the school size after making their estimate to the observer who is not aware of the count to determine if observers can learn to estimate more accurately, and 3) obtain movie and still photographs of dolphin schools of known size at various stages of chase, capture and release to be used for observer training. The secondary objectives of the cruise were to: 1) obtain life history specimens and data from any dolphins that were killed incidental to purse seining. These specimens and data were to be analyzed by the U.S. National Marine Fisheries Service ( NMFS ) , 2) record evasion tactics of dolphin schools by observing them from the helicopter while the seiner approached the school, 3) examine alternative methods for estimating the distance and bearing of schools where they were first sighted, 4) collect the Commission's standard cetacean sighting, set log and daily activity data and expendable bathythermograph data. (PDF contains 31 pages.)
Resumo:
Twenty four matured samples of Bagrus bayad macropterus from the wild (Shiroro Lake, Nigeria) and under captivity, size ranging from 412.69-3300.00 g total body weight, were analysed for sexual maturity,fecundity and egg size. The average fecundity obtained were 53352.59 and 21028.32 eggs for the wild and cultured fish respectively.Positive relationship was observed between fecundity, body size and gonad weight. Fecundity increased as body size increased. A more positive and linear relationship was observed between fecundity and gonad weight than fecundity and total body weight. Egg diameter,length and weight were determined from the egg samples. The mean size range of eggs for cultured fish was 0.74-1.05 mm of diameter; 1.01-1.20 mm of length and 0.25-0.40 mg of weight. Wild samples had mean size range of 0.68-l.09 mm of diameter, 0.85-1.38 mm of length and egg mean weight range was 0.15- 0.40 mg. Sexual maturity is dependent on size (1 kg and above). The egg diameter, egg length and weight bear no relationship with each other. Gonad development study indicated that gonad development was faster under captivity than in wild
Resumo:
Abstract: In order to investigate the effects of the grain size distribution and the micro-structure of soils on the mechani- cal characteristics, some static triaxial compression tests were carried out, and then the relationship of stress-strain and the strength behavior of silty sand were compared among undisturbed samples with different grain size distribution, undis- turbed and remolded samples with the same grain size distribution, and reconstituted samples (or called mixed samples) with different grain size distribution. The effects of grain size distribution and structure on the mechanic behavior of silty sands were mainly analyzed. It is shown that the obvious differences of the mechanical characteristics between undis- turbed soils and remolded soils are caused by the differences of soil structures. Although the grain size distribution are different between two soil samples, their mechanical characteristics may be close to each other, or may have obvious differences because of the effects of micro-structure.
Resumo:
The dispersion of an isolated, spherical, Brownian particle immersed in a Newtonian fluid between infinite parallel plates is investigated. Expressions are developed for both a 'molecular' contribution to dispersion, which arises from random thermal fluctuations, and a 'convective' contribution, arising when a shear flow is applied between the plates. These expressions are evaluated numerically for all sizes of the particle relative to the bounding plates, and the method of matched asymptotic expansions is used to develop analytical expressions for the dispersion coefficients as a function of particle size to plate spacing ratio for small values of this parameter.
It is shown that both the molecular and convective dispersion coefficients decrease as the size of the particle relative to the bounding plates increase. When the particle is small compared to the plate spacing, the coefficients decrease roughly proportional to the particle size to plate spacing ratio. When the particle closely fills the space between the plates, the molecular dispersion coefficient approaches zero slowly as an inverse logarithmic function of the particle size to plate spacing ratio, and the convective dispersion coefficent approaches zero approximately proportional to the width of the gap between the edges of the sphere and the bounding plates.
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.