954 resultados para viés interpretativo
Resumo:
In this study, varieties of lipid bilayer-protected gold nanoparticles (AuNPs) were synthesized through a simple wet chemical method, and then the effect of freeze-thawing on the as-prepared AuNPs was investigated. The freeze-thawing process induced fusion or fission of lipid bilayers tethered on the AuNPs. The UV-vis spectra and transmission electron microscopy experiments revealed that the disruption of lipid bilayer structures on the nanoparticles led to the fusion or aggregation of AuNPs.
Resumo:
A facile phospholipid/room-temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film.
Resumo:
The spectroscopic and transmission electron microscopy (TEM) studies of interaction between chlorpromazine (CPZ) and dimyristoyl phosphatidylglycerol (DMPG) bilayer by using gold nanoparticles (AuN-Ps) as probes are reported. The DMPG bilayer-protected AuNPs were prepared by a simple one-step method. The DMPG bilayer tethered on the AuNPs was considered as a biomembrane model. The addition of CPZ affected the surface plasmon resonance (SPR) and morphology of the prepared AuNPs, and this effect was monitored by UV-vis spectroscopy and TEM.
Resumo:
MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.
Resumo:
CeF3:Tb3+ nanoparticles were successfully prepared by a polyol process using diethylene glycol ( DEG) as solvent. After being coated with dense silica, these CeF3:Tb3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 ( P 123) as structure-directing agent. The composite can load ibuprofen and release the drug in the PBS. The composite was characterized by X-ray diffraction ( XRD), transmission electron microscopy ( TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively.
Resumo:
A novel method for immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)Cl-2) on electrode surfaces based on the vapor-surface sol-gel deposition strategy is first demonstrated in this paper. Ru(bpy)(3)Cl-2 immobilized sol-gel (Ru(bpy)(3)Cl-2/sol-gel) films were characterized by UV-vis spectroscopy and field-emitted scanning electron microscopy (FE-SEM). These results showed that Ru(bpy)(3)Cl-2 was successfully incorporated into the silica sol-gel film. it was found that many irregular Ru(bpy)(3)Cl-2/sol-gel clusters were formed on surfaces through one deposition and thick sol-gel films were observed after further deposition.
Resumo:
Electrodeposition of novel Au/Pd bimetallic nanostructures with dendrimer films as matrices has been reported. The dendrimers exhibited highly open structures arising from protonation of amines and this made them have good penetrability for solvent molecules. The unique properties of dendrimers obviously affected the morphologies and compositions of deposited bimetallic nanostructures compared with those from unmodified surfaces. Field-emitted scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy were used to characterize these nanostructures.
Resumo:
A novel selenium source was developed to synthesize the size-controlled CdSe nanocrystals with relatively narrow size distribution successfully in a two-phase thermal approach. A highly reactive and aqueous soluble selenium source was provided by the reduction of selenite, and in this route the size of the nanocrystals can be adjusted by the reaction temperature and time. The size, crystalline structure and optical characteristics of these nanocrystals were investigated by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and photoluminescence spectroscopy. The influence factors for this approach were also discussed.
Resumo:
Low crystalline order has been proved to be one of the main hindrances for achieving high performance devices based on thin films composed of crystallizable polymer. In this work, we use a facile method to substantially improve crystallinity of poly(3-hexylthiophene) (P3HT) in its pure or composite film via the construction of ordered precursors in the solution used for thin film deposition. These improvements have been confirmed by bright-field transmission electron micrography, electron diffraction, UV-Vis absorption and wide-angle X-ray diffraction.
Resumo:
Different morphologies of Ag2S nano- and micro-materials, including spokewise micrometer bars, microfibers, nanowires, worm-like nanoparticles and nanopolyhedrons have been obtained controllably by a facile one-step method at room temperature. Powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and scanning electron microscope (SEM) were employed to characterize the structure and compositions of those nanomaterials. Furthermore, ultraviolet visible (UV-vis) spectra of Ag2S with different morphologies show different spectral features.
Resumo:
A novel water-soluble electroactive polymer, aniline pentamer crosslinked chitosan (Pentamer-c-Chi), was prepared by condensation polymerization of the terminal carboxyl groups in aniline pentamer with the amino side groups in chitosan in aqueous solution. The carboxyl groups were activated by N-hydroxysuccinimide (NHS) and N,N'-dicyclohexylcarbodiimide (I)CC). The electrochemical behavior of aniline pentamer in this kind of crosslinked polymer was studied in acidic aqueous solution by means of cyclic voltammetry (CV), UV-vis, and electron spin resonance (ESR) spectroscopy.
Resumo:
A new kind of electroactive polymers was synthesized by using aniline pentamer (AP) cross-linking chitosan (CS) in acetic acid/DMSO/DMF solution. UV-vis and CV confirmed the electroactivity of polymers in acidic aqueous solution. The amphiphilic polymers self-assembled into 200-300 nm micelles by dialysis against deionized water from the acetic acid buffer solution. Three samples with different weight percentages of AP were used to identify the relationship between the content of AP and the differentiation of rat neuronal pheochromocytoma PC-12 cells without external stimulation.
Resumo:
A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).
Resumo:
Polyelectrolyte-functionalized ionic liquid (PFIL) and Prussian blue (PB) nanoparticles were used to fabricate ultrathin films on the ITO substrate through electrostatic layer-by-layer assembly method. Multilayer growth was examined by UV-vis spectroscopy and cyclic voltammetry. The resulting ITO/(PFIL/PB)n electrode showed two couples of well-defined redox peaks and good electrocatalytical activity towards the reduction of hydrogen peroxide.
Resumo:
It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.