1000 resultados para trisomy 17
Resumo:
Invokaatio: D.A.G.
Resumo:
Painovuosi nimekkeestä.
Resumo:
Invokaatio: I.N.I.
Resumo:
Variantti B.
Resumo:
Painovuosi nimekkeestä.
Resumo:
Gastric cancer is the fourth most frequent type of cancer and the second cause of cancer mortality worldwide. The genetic alterations described so far for gastric carcinomas include amplifications and mutations of the c-ERBB2, KRAS, MET, TP53, and c-MYC genes. Chromosomal instability described for gastric cancer includes gains and losses of whole chromosomes or parts of them and these events might lead to oncogene overexpression, showing the need for a better understanding of the cytogenetic aspects of this neoplasia. Very few gastric carcinoma cell lines have been isolated. The establishment and characterization of the biological properties of gastric cancer cell lines is a powerful tool to gather information about the evolution of this malignancy, and also to test new therapeutic approaches. The present study characterized cytogenetically PG-100, the first commercially available gastric cancer cell line derived from a Brazilian patient who had a gastric adenocarcinoma, using GTG banding and fluorescent in situ hybridization to determine MYC amplification. Twenty metaphases were karyotyped; 19 (95%) of them presented chromosome 8 trisomy, where the MYC gene is located, and 17 (85%) presented a deletion in the 17p region, where the TP53 is located. These are common findings for gastric carcinomas, validating PG100 as an experimental model for this neoplasia. Eighty-six percent of 200 cells analyzed by fluorescent in situ hybridization presented MYC overexpression. Less frequent findings, such as 5p deletions and trisomy 16, open new perspectives for the study of this tumor.
Resumo:
Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE) binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER). Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5R17;flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17β-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17β-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.
Resumo:
Nimekettä edeltää hepreankielinen invokaatio.
Resumo:
Dedikaatio: Pehr Gust. Carstén [ruots. runo].
Resumo:
MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3R17; untranslated regions (3R17;UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3R17;UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3R17;UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.
Resumo:
Variantti A.
Resumo:
Variantti B.
Resumo:
Variantti A.
Resumo:
Painovuosi nimekkeestä.
Resumo:
This study aimed to explore the correlations between cadherin-17 (CDH17) protein expression and the clinicopathological features and prognosis of patients with sporadic gastric cancer (GC). Nine relevant studies of 1,960 patients were identified using electronic database searches supplemented with a manual search in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted using STATA 12.0 statistical software. Relative risks and 95% confidence intervals were determined, and Z test was used to measure the significance of the overall effect size. A total of nine eligible cohort studies were included in this meta-analysis. The expression of CDH17 in patients with diffuse GC was significantly higher than in those with intestinal-type GC. Moreover, the tumor depth of invasion differed significantly between patients with positive CDH17 (CDH17+) and negative CDH17 (CDH17-) GC. However, there were no significant differences between CDH17+ and CDH17- GC patients with respect to tumor node metastasis clinical stages, histological grades, or lymph node metastasis. Despite the differences in invasive depth, there was no significant difference in 5-year survival rates between CDH17+ and CDH17- GC patients. Our meta-analysis provides evidence that CDH17 protein expression may be associated with the development of GC, suggesting that CDH17 is an important biomarker that could be useful for the early diagnosis of GC. However, CDH17 levels do not appear to impact overall survival.