813 resultados para transit system performance
Resumo:
The present dissertation aimed to develop a new microfluidic system for a point-of-care hematocrit device. Stabilization of microfluidic systems via surfactant additives and integration of semipermeable SnakeSkin® membranes was investigated. Both methods stabilized the microfluidic systems by controlling electrolysis bubbles. Surfactant additives, Triton X-100 and SDS stabilized promoted faster bubble detachment at electrode surfaces by lowering surface tension and decreased gas bubble formation by increasing gas solubility. The SnakeSkin® membranes blocked bubbles from entering the microchannel and thus less disturbance to the electric field by bubbles occurred in the microchannel. Platinum electrode performance was improved by carbonizing electrode surface using red blood cells. Irreversibly adsorbed RBCs lysed on platinum electrode surfaces and formed porous carbon layers while current response measurements. The formed carbon layers increase the platinum electrode surface area and thus electrode performance was improved by 140 %. The microfluidic system was simplified by employing DC field to use as a platform for a point-of-care hematocrit device. Feasibility of the microfluidic system for hematocrit determination was shown via current response measurements of red blood cell suspensions in phosphate buffered saline and plasma media. The linear trendline of current responses over red blood cell concentration was obtained in both phosphate buffered saline and plasma media. This research suggested that a new and simple microfluidic system could be a promising solution to develop an inexpensive and reliable point-of-care hematocrit device.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as “Clickers”, improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
The fact that most of the large scale solar PV plants are built in arid and semi-arid areas where land availability and solar radiation is high, it is expected the performance of the PV plants in such locations will be affected significantly due to high cell temperature as well as due to soiling. Therefore, it is essential to study how the different PV module technologies will perform in such geographical locations to ensure a consistent and reliable power delivery over the lifetime of the PV power plants. As soiling is strongly dependent on the climatic conditions of a particular location a test station, consisted of about 24 PV modules and a well-equipped weather station, was built within the fences of Scatec’s 75 MW Kalkbult solar PV plant in South Africa. This study was performed to a better understand the effect of soiling by comparing the relative power generation by the cleaned modules to the un-cleaned modules. Such knowledge can enable more quantitative evaluations of the cleaning strategies that are going to be implemented in bigger solar PV power plants. The data collected and recorded from the test station has been analyzed at IFE, Norway using a MatLab script written for this thesis project. This thesis work has been done at IFE, Norway in collaboration with Stellenbosch University in South Africa and Scatec Solar a Norwegian independent power producer company. Generally for the polycrystalline modules it is found that the average temperature corrected efficiency during the period of the experiment has been 15.00±0.08 % and for the thin film-CdTe with ARC is 11.52% and for the thin film without ARC is about 11.13% with standard uncertainty of ±0.01 %. Besides, by comparing the initial relative average efficiency of the polycrystalline-Si modules when all the modules have been cleaned for the first time and the final relative efficiency; after the last cleaning schedule which is when all the reference modules E, F, G, and H have been cleaned for the last time it is found that poly3 performs 2 % and 3 % better than poly1 and poly16 respectively, poly13 performs 1 % better than poly15 as well as poly5 and poly12 performs 1 % and 2 % better than poly10 respectively. Besides, poly5 and poly12 performs a 9 % and 11 % better than poly7. Furthermore, there is no change in performance between poly6 and poly9 as well as poly4 and poly15. However, the increase in performance of poly3 to poly1, poly13 to poly15 as well as poly5 and poly12 to poly10 is insignificant. In addition, it is found that TF22 perform 7% better than the reference un-cleaned module TF24 and similarly; TF21 performs 7% higher than TF23. Furthermore, modules with ARC glass (TF17, TF18, TF19, and TF20) shows that cleaning the modules with only distilled water (TF19) or dry-cleaned after cleaned with distilled water(TF20) decreases the performance of the modules by 5 % and 4 % comparing to its respective reference uncleanedmodules TF17 and TF18 respectively.