926 resultados para tolerant quantum computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x̂ direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising ẑ direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[ c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293–263 K only on the subsecond time scale of cyclic voltammetry. Although the EPR-active red-coloured pleiadiene radical cation is stable according to the literature in concentrated sulfuric acid, spectroelectrochemical measurements reported in this study provide convincing evidence for its facile conversion into the green-coloured, formally closed shell and, hence, EPRsilent π-bound dimer dication stable in THF at 253 K. The unexpected formation of the thermally unstable dimeric product featuring a characteristic intense low-energy absorption band at 673 nm (1.84 eV; logεmax=4.0) is substantiated by ab initio calculations on the parent pleiadiene molecule and the PF6 − salts of the corresponding radical cation and dimer dication. The latter is stabilized with respect to the radical cation by 14.40 kcal mol−1 (DFT B3LYP) [37.64 kcal mol−1 (CASPT2/DFT B3LYP)]. An excellent match has been obtained between the experimental and TDDFT- calculated UV–vis spectra of the PF6 − salt of the pleiadiene dimer dication, considering solvent (THF) effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time parallel computation of histograms using an array of pipelined cells is proposed and prototyped in this paper with application to consumer imaging products. The array operates in two modes: histogram computation and histogram reading. The proposed parallel computation method does not use any memory blocks. The resulting histogram bins can be stored into an external memory block in a pipelined fashion for subsequent reading or streaming of the results. The array of cells can be tuned to accommodate the required data path width in a VLSI image processing engine as present in many imaging consumer devices. Synthesis of the architectures presented in this paper in FPGA are shown to compute the real-time histogram of images streamed at over 36 megapixels at 30 frames/s by processing in parallel 1, 2 or 4 pixels per clock cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct method is presented for determining the uncertainty in reservoir pressure, flow, and net present value (NPV) using the time-dependent, one phase, two- or three-dimensional equations of flow through a porous medium. The uncertainty in the solution is modelled as a probability distribution function and is computed from given statistical data for input parameters such as permeability. The method generates an expansion for the mean of the pressure about a deterministic solution to the system equations using a perturbation to the mean of the input parameters. Hierarchical equations that define approximations to the mean solution at each point and to the field covariance of the pressure are developed and solved numerically. The procedure is then used to find the statistics of the flow and the risked value of the field, defined by the NPV, for a given development scenario. This method involves only one (albeit complicated) solution of the equations and contrasts with the more usual Monte-Carlo approach where many such solutions are required. The procedure is applied easily to other physical systems modelled by linear or nonlinear partial differential equations with uncertain data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.

Relevância:

20.00% 20.00%

Publicador: