998 resultados para text edition
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Jornalismo.
Resumo:
Text file evaluation is an emergent topic in e-learning that responds to the shortcomings of the assessment based on questions with predefined answers. Questions with predefined answers are formalized in languages such as IMS Question & Test Interoperability Specification (QTI) and supported by many e-learning systems. Complex evaluation domains justify the development of specialized evaluators that participate in several business processes. The goal of this paper is to formalize the concept of a text file evaluation in the scope of the E-Framework – a service oriented framework for development of e-learning systems maintained by a community of practice. The contribution includes an abstract service type and a service usage model. The former describes the generic capabilities of a text file evaluation service. The later is a business process involving a set of services such as repositories of learning objects and learning management systems.
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
In this paper, a rule-based automatic syllabifier for Danish is described using the Maximal Onset Principle. Prior success rates of rule-based methods applied to Portuguese and Catalan syllabification modules were on the basis of this work. The system was implemented and tested using a very small set of rules. The results gave rise to 96.9% and 98.7% of word accuracy rate, contrary to our initial expectations, being Danish a language with a complex syllabic structure and thus difficult to be rule-driven. Comparison with data-driven syllabification system using artificial neural networks showed a higher accuracy rate of the former system.
Resumo:
Hoje em dia existem múltiplas aplicações multimédia na Internet, sendo comum qualquer website apresentar mais de uma forma de visualização de informação além do texto como, por exemplo: imagens, áudio, vídeo e animação. Com aumento do consumo e utilização de Smartphone e Tablets, o volume de tráfego de internet móvel tem vindo a crescer rapidamente, bem como o acesso à internet através da televisão. As aplicações web-based ganham maior relevância devido à maior partilha ou consumo de conteúdos multimédia, com ou sem edição ou manipulação da mesma, através de redes sociais, como o Facebook. Neste documento é apresentado o estudo de alternativas HTML5 e a implementação duma aplicação web-based no âmbito do Mestrado de Engenharia Informática, ramo de Sistemas Gráficos e Multimédia, no Instituto Superior Engenharia do Porto (ISEP). A aplicação tem como objetivo a edição e manipulação de imagens, tanto em desktop como em dispositivos móveis, sendo este processo exclusivamente feito no lado do cliente, ou seja, no Browser do utilizador. O servidor é usado somente para o armazenamento da aplicação. Durante o desenvolvimento do projeto foi realizado um estudo de soluções de edição e manipulação de imagem existentes no mercado, com a respetiva análise de comparação e apresentadas tecnologias Web modernas como HTML5, CSS3 e JavaScript, que permitirão desenvolver o protótipo. Posteriormente, serão apresentadas, detalhadamente, as várias fases do desenvolvimento de um protótipo, desde a análise do sistema, à apresentação do protótipo e indicação das tecnologias utilizadas. Também serão apresentados os resultados dos inquéritos efetuados a um grupo de pessoas que testaram esse protótipo. Finalmente, descrever-se-á de forma mais exaustiva, a implementação e serão apontadas dificuldades encontradas ao longo do desenvolvimento, bem como indicadas futuras melhorias a introduzir.
Resumo:
Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
The dissertation presented for obtaining the Master’s Degree in Electrical Engineering and Computer Science, at Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Recensão do livro Moral Mazes: the world of corporate managers (20th anniversary edition) [Robert Jackall], 2010, Oxford University Press, Nova Iorque
Resumo:
Actualmente, com a massificação da utilização das redes sociais, as empresas passam a sua mensagem nos seus canais de comunicação, mas os consumidores dão a sua opinião sobre ela. Argumentam, opinam, criticam (Nardi, Schiano, Gumbrecht, & Swartz, 2004). Positiva ou negativamente. Neste contexto o Text Mining surge como uma abordagem interessante para a resposta à necessidade de obter conhecimento a partir dos dados existentes. Neste trabalho utilizámos um algoritmo de Clustering hierárquico com o objectivo de descobrir temas distintos num conjunto de tweets obtidos ao longo de um determinado período de tempo para as empresas Burger King e McDonald’s. Com o intuito de compreender o sentimento associado a estes temas foi feita uma análise de sentimentos a cada tema encontrado, utilizando um algoritmo Bag-of-Words. Concluiu-se que o algoritmo de Clustering foi capaz de encontrar temas através do tweets obtidos, essencialmente ligados a produtos e serviços comercializados pelas empresas. O algoritmo de Sentiment Analysis atribuiu um sentimento a esses temas, permitindo compreender de entre os produtos/serviços identificados quais os que obtiveram uma polaridade positiva ou negativa, e deste modo sinalizar potencias situações problemáticas na estratégia das empresas, e situações positivas passíveis de identificação de decisões operacionais bem-sucedidas.
Resumo:
telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.
Resumo:
Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.
Resumo:
This article aims to describe important points in the history of panic disorder concept, as well as to highlight the importance of its diagnosis for clinical and research developments. Panic disorder has been described in several literary reports and folklore. One of the oldest examples lies in Greek mythology - the god Pan, responsible for the term panic. The first half of the 19th century witnessed the culmination of medical approach. During the second half of the 19th century came the psychological approach of anxiety. The 20th century associated panic disorder to hereditary, organic and psychological factors, dividing anxiety into simple and phobic anxious states. Therapeutic development was also observed in psychopharmacological and psychotherapeutic fields. Official classifications began to include panic disorder as a category since the third edition of the American Classification Manual (1980). Some biological theories dealing with etiology were widely discussed during the last decades of the 20th century. They were based on laboratory studies of physiological, cognitive and biochemical tests, as the false suffocation alarm theory and the fear network. Such theories were important in creating new diagnostic paradigms to modern psychiatry. That suggests the need to consider a wide range of historical variables to understand how particular features for panic disorder diagnosis have been developed and how treatment has emerged.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação