968 resultados para terrestrial algae
Resumo:
A new type of dual-channel PAM chlorophyll fluorometer has been developed, which is specialised in the detection of extremely small differences in photosynthetic activity in algae or thylakoids suspensions. In conjunction with standardised algae cultures or isolated thylakoids, the new device provides an ultrasensitive biotest system for detection of toxic substances in water samples. In this report, major features of the new device are outlined and examples of its performance are presented using suspensions of Phaeodactylum tricornutum (diatoms) and of freeze-dried thylakoids of Lactuca sativa (salad). Investigated and reference samples are exposed to the same actinic intensity of pulse-modulated measuring light. The quantum yields are assessed by the saturation pulse method. Clock-triggered repetitive measurements of quantum yield typically display a standard deviation of 0.1%, corresponding to the inhibition induced by 0.02 mug diuron l(-1). Hence, for diuron or compounds with similar toxicity, the detection limit is well below the 0.1 mug l(-1) defined as the limit for the presence of a single toxic substance in water by the European Commission drinking water regulation. The amounts of water and biotest material required for analysis are very small, as a single assay involves two 1 ml samples, each containing ca. 0.5 mug chlorophyll. Both with Phaeodactylum and thylakoids the relationship between inhibition and diuron concentration is strictly linear up to 10% inhibition, with very similar slopes. Apparent inhibition depends on the actinic effect of the measuring light, showing optima at 6 and 4 mumol quanta m(-2) s(-1) with Phaeodactylum and thylakoids, respectively.
Resumo:
As a component of archaeological investigations on the central Queensland coast, a series of five marine shell specimens live-collected between A.D. 1904 and A.D. 1929 and 11 shell/ charcoal paired samples from archaeological contexts were radiocarbon dated to determine local DeltaR values. The object of the study was to assess the potential influence of localized variation in marine reservoir effect in accurately determining the age of marine and estuarine shell from archaeological deposits in the area. Results indicate that the routinely applied DeltaR value of -5 +/- 35 for northeast Australia is erroneously calculated. The determined values suggest a minor revision to Reimer and Reimer's (2000) recommended value for northeast Australia from DeltaR = +11 +/- 5 to + 12 +/- 7, and specifically for central Queensland to DeltaR = +10 +/- 7, for near-shore open marine environments. In contrast, data obtained from estuarine shell/charcoal pairs demonstrate a general lack of consistency, suggesting estuary-specific patterns of variation in terrestrial carbon input and exchange with the open ocean. Preliminary data indicate that in some estuaries, at some time periods, a DeltaR value of more than - 155 +/- 55 may be appropriate, In estuarine contexts in central Queensland, a localized estuary-specific correction factor is recommended to account for geographical and temporal variation in C-14 activity. (C) 2002 Wiley Periodicals.
Resumo:
Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.
Resumo:
Science communication. including extension services. plays a key role in achieving sustainable native vegetation management. One of the pivotal aspects of the debate on sustainable vegetation management is the scientific information underpinning policy-making. In recent years. extension services have Shifted their focus from top-down technology transfer to bottom-up participation and empowerment. I here has also been a broadening of communication strategies to recognise the range of stakeholders involved in native vegetation management and to encompass environmental concerns. This paper examines the differences between government approaches to extension services to deliver policy and the need for effective communication to address broader science issues that underpin native vegetation management. The importance of knowing the learning styles of the stakeholders involved in native vegetation management is discussed at a time of increasing reliance on mass communication for information exchange and the importance of personal communication to achieve on-ground sustainable management. Critical factors for effective science-management communication are identified Such as: (i) undertaking scientific studies (research) with community involvement, acceptance and agreed understanding of project objectives (ii) realistic community consultation periods: (iii) matching communication channels with stakeholder needs; (iv) combining scientific with local knowledge in in holistic (biophysical and social) approach to understanding in issued and (v) regional partnerships. These communication factors are considered to be essential to implementing on-ground natural resource management strategics and actions, including those concerned with native vegetation management.
Resumo:
Until the recent establishment of Angiostrongylus cantonensis in North America. Australia was the only developed region endemic for this parasite. Almost 50 years ago the life cycle was elucidated there, in the city of Brisbane, and the first human infections probably occurred in 1959. From the 1970s, increasing numbers of autochthonous infections have been reported along the central east coast of the continent (southeast Queensland and northern New South Wales), involving humans, rats, dogs, horses, flying foxes and marsupials. Ten years ago, the parasite was discovered in Sydney, almost 1,000 km to the south, in dogs. In that city, it has since been diagnosed as a cause of neurological disease in increasing numbers of dogs, flying foxes, marsupials and zoo primates. Presumably, these infections resulted from the ingestion of snails or slugs, and it seems that virtually all species of native and exotic terrestrial molluscs can serve as intermediate hosts. It is not known how the parasite was introduced to this continent, or how it has spread over such an extensive territory, although eventually its range could encompass the entire east coast, and potentially other regions. It is also not known if the almost identical, native species, A. mackerrasae, is able to infect people (or other non-rodent hosts). All worms recovered to date, from one fatal human case, and from many animal infections, have been confirmed as A. cantonensis.
Resumo:
Dinoflagellates exist in symbiosis with a number of marine invertebrates including giant clams, which are the largest of these symbiotic organisms. The dinoflagellates (Symbiodinium sp.) live intercellularly within tubules in the mantle of the host clam. The transport of inorganic carbon (Ci) from seawater to Symbiodinium (=zooxanthellae) is an essential function of hosts that derive the majority of their respiratory energy from the photosynthate exported by the zooxanthellae. Immunolocalisation studies show that the host has adapted its physiology to acquire, rather than remove CO2, from the haemolymph and clam tissues. Two carbonic anhydrase (CA) isoforms (32 and 70 kDa) play an essential part in this process. These have been localised to the mantle and gill tissues where they catalyse the interconversion of HCO3- to CO2, which then diffuses into the host tissues. The zooxanthellae exhibit a number of strategies to maximise Ci acquisition and utilisation. This is necessary as they express a form II Rubisco that has poor discrimination between CO2 and O-2. Evidence is presented for a carbon concentrating mechanism (CCM) to overcome. this disadvantage. The CCM incorporates the presence of a light-activated CA activity, a capacity to take up both HCO3- and CO2, an ability to accumulate an elevated concentration of Ci within the algal cell, and localisation of Rubisco to the pyrenoid. These algae also express both external and intracellular CAs, with the intracellular isoforms being localised to the thylakoid lumen and pyrenoid. These results have been incorporated into a model that explains the transport of Ci from seawater through the clam to the zooxanthellae.
Resumo:
Whereas terrestrial animal populations might show genetic connectivity within a continent, marine species, such as hermatypic corals, may have connectivity stretching to all corners of the planet. We quantified the genetic variability within and among populations of the widespread scleractinian coral, Plesiastrea versipora along the eastern Australian seaboard (4145 km) and the Ryukyu Archipelago (Japan, 681 km) using sequences of internal transcribed spacers (ITS1-2) from ribosomal DNA. Geographic patterns in genetic variability were deduced from a nested clade analysis (NCA) performed on a parsimony network haplotype. This analysis allowed the establishment of geographical associations in the distribution of haplotypes within the network cladogram, therefore allowing us to deduce phylogeographical patterns based under models of restricted gene flow, fragmentation and range expansion. No significant structure was found among Ryukyu Archipelago populations. The lack of an association between the positions of haplotypes in the cladogram with geographical location of these populations may be accounted for by a high level of gene flow of P. versipora within this region, probably due to the strong Kuroshio Current. In contrast, strong geographical associations were apparent among populations of P. versipora along the south-east coast of Australia. This pattern of restricted genetic connectivity among populations of P. versipora on the eastern seaboard of Australia seems to be associated with the present surface ocean current (the East Australian Current) on this side of the south-western Pacific Ocean.
Resumo:
There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organizational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible.
Resumo:
Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.
Resumo:
Emmanuel Levinas's work on the ethical responsibility of the face-to-face relation offers an illuminating context or clearing within which we might better appreciate the work of Simone Weil. Levinas's subjectivity of the hostage, the one who is responsible for the other before being responsible for the self, provides us with a way of re-encountering the categories of gravity and grace invoked in Weil's original account. In this paper I explore the terrain between these thinkers by raising the question of eating as, in part, an ethical act. Weil's conception of grace refers to the state of decreation in which the utter humility of the self moves toward a kind of disintegration and weightlessness. this weightlessness, which Weil contrasts to the gravity of terrestrial weight, might be thought of in terms of the subject's fundamental responsibility for the other, especially in terms of the injunction Thou shalt neither kill nor take the food of thy neighbour. Taking the place of the other, taking the food from the mouth of the other, is the ethical dilemma facing the subject as hostage and an elaboration of this situation may provide us with steps toward a radical questioning of anorexia as - at least in part - an ethical rather than purely medical condition.
Resumo:
In the reproductive biology of organisms, a continuum exists from "highly reproductive species" at one end to "survivor species" at the other end. Among other factors, the position of a species along this continuum affects its sensitivity to human exploitation and its vulnerability to extinction. Flying foxes are long-lived, seasonal breeders, with a rigid, well-defined breeding season that is largely or wholly genetically determined. Unlike opportunistic, highly reproductive species, such as rabbits or mice, female flying foxes are unable to produce viable young before their second or third year of life, and are then capable of producing just one young per year. Such a breeding strategy will be successful only if flying-foxes are long-lived and suffer naturally low mortality rates. In this paper, we assess the vulnerability of flying foxes to extinction, using basic parameters of reproduction observed in the wild, and in captive breeding colonies of P. poliocephalus, P. alecto and P. scapulatus, and survival rates that are likely to apply to Australian conditions. Our models show explicitly that flying-fox populations have a very low capacity for increase, even under the most ideal conditions. The implications of our models are discussed in reference to the long-term management and conservation needs of Australian flying foxes. We conclude that current death-rates of flying-foxes in NSW and Queensland fruit orchards are putting state populations at serious risk.
Resumo:
It is becoming increasingly clear that species of smaller body size tend to be less vulnerable to contemporary extinction threats than larger species, but few studies have examined the mechanisms underlying this pattern. In this paper, data for the Australian terrestrial mammal fauna are used to ask whether higher reproductive output or smaller home ranges can explain the reduced extinction risk of smaller species. Extinct and endangered species do indeed have smaller litters and larger home ranges for their body size than expected under a null model. In multiple regressions, however, only litter size is a significant predictor of extinction risk once body size and phylogeny are controlled for. Larger litters contribute to fast population growth, and are probably part of the reason that smaller species are less extinction-prone. The effect of litter size varies between the mesic coastal regions and the and interior of Australia, indicating that the environment a species inhabits mediates the effect of biology on extinction risk. These results suggest that predicting extinction risk from biological traits is likely to be a complex task which must consider explicitly interactions between biology and environment.
Resumo:
The last decade has seen spirited debates about how resource availability affect the intensity of competition. This paper examines the effect that a dominant introduced species, Carrichtera annua, has upon the winter annual community in the arid chenopod shrublands of South Australia. Manipulative field experiments were conducted to assess plant community response to changing below-ground resource levels and to the manipulation of the density of C. annua. Changes in the density of C. annua had little effect on the abundance of all other species in the guild. Nutrient addition produced an increase in the biomass of the most abundant native species, Crassula colorata. An analysis of the root distribution of the main species suggested that the areas of soil resource capture of C. annua and C. colorata are largely segregated. Our results suggest that intraspecific competition may be stronger than interspecific competition, controlling the species responses to increased resource availability. The results are consistent with a two-phase resource dynamics systems, with pulses of high resource availability triggering growth, followed by pulses of stress. Smaller plants were nutrient limited under natural field conditions, suggesting that stress experienced during long interpulse phases may override competitive effects after short pulse phases. The observed differences in root system structure will determine when plants of a different species are experiencing a pulse or an interpulse phase. We suggest that the limitations to plant recruitment and growth are the product of a complex interplay between the length and intensity of the pulse of resource availability, the duration and severity of the interpulse periods, and biological characters of the species.
Resumo:
We determined which factors predict the presence and abundance of Dusky Moorhens (Gallinula tenebrosa) at wetlands by surveying the ecological and habitat characteristics of 62 sites across south-east Queensland. Moorhens were observed in 48 of the sites sampled. They were more likely to be found at sites surrounded by taller terrestrial vegetation and where free-floating and attached aquatic vegetation was more abundant. The number of moorhens found at a site increased in relation to vegetation height, the abundance of attached aquatic vegetation and the number of purple swamphens observed. These results suggest that there are ecological constraints on the distribution of moorhens, and that food abundance and the availability of suitable nesting sites determine the overall distribution and abundance of moorhens in wetlands. Adult moorhens develop brightly coloured fleshy frontal shields, bills and legs when breeding, although in some populations birds maintain year-round colouration. We observed year-round breeding colouration in 23 out of 34 sampling sites that had moorhens and were surveyed in August. Coloured moorhens were found during winter at sites with higher minimum winter temperatures, and more abundant free-floating and submerged leafy vegetation. In addition, higher proportions of moorhens were coloured at sites with higher mean minimum temperatures. The retention of year-round breeding colouration appears to be restricted to areas with warmer winter temperatures and more abundant food. The results suggest that areas not occupied by moorhens are of inadequate quality to support breeding populations. We suggest that ecological constraints on independent breeding in Dusky Moorhens may have favoured the evolution of their unusual cooperative breeding system, which involves frequent mate-sharing by both sexes.