984 resultados para synthetic peptide Lys a1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The esterification of fragment C1-C8 (2) with fragment C16-C23 (3) to give iodo derivative 4, followed by a Pd-catalysed coupling with a C9-C15 fragment (7 or 8), may provide a common precursor of most palmerolides. Ligands and reaction conditions were exhaustively examined to perform the C15-C16 bond formation via Negishi reaction. With simple models, pre-activated Pd-Xantphos and Pd-DPEphos complexes were the most efficient catalysts at RT. Zincation of the C9-C15 fragment (8) and cross coupling with 4 required 3 equiv of t-BuLi, 10 mol % of Pd-Xantphos and 60 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadal somatic cell and adrenocortical endocrine tumors are rare. The incidence of adrenocortical carcinomas is only 1-2/1000000 a year. However, they are aggressive, especially in adulthood and currently surgery is the only curative treatment. Cytotoxic agents are in use in advanced cancers, but side effects and multidrug resistance are often problems. Thus there is a need for novel curative treatment methods. In contrast, ovarian granulosa cell tumors and testicular Leydig cell tumors are usually benign, especially at a younger age. The aim of the present thesis was to study a novel targeted treatment method through luteinizing hormone/chorionic gonadotropin receptor (LHCGR) in a transgenic mouse tumor model. The cytotoxic agent was lytic peptide Hecate-CGbeta conjugate where 23 amino acid Hecate, a synthetic form of honeybee venom melittin, was conjugated to 15 amino acid fragment of human chorionic gonadotropin β subunit. Lytic peptides are known to act only on negatively charged cells, such as bacteria and cancer cells and hereby, due to hCGbeta fragment, the conjugate is able to bind directly to LHCGR bearing cancer cells, saving the healthy ones. The experiments were carried out in inhibin-alpha-Simian Virus 40-T-antigen transgenic mice that are known to express LHCGR-bearing gonadal tumors, namely Leydig and granulosa cell tumors by 100% penetrance. If the mice are gonadectomized prepubertally they form adrenocortical tumors instead. Transgenic and wild type mice were treated for three consecutive weeks with control vehicle, Hecate or Hecate-CGbeta conjugate. GnRH antagonist or estradiol was given to a group of mice with or without Hecate-CGbeta conjugate to analyze the additive role of gonadotropin blockage in adrenocortical tumor treatment efficacy. Hecate-CGbeta conjugate was able to diminish the gonadal and adrenal tumor size effectively in males. No treatment related side effects were found. Gonadotropin blockage through GnRH antagonist was the best treatment in female adrenal tumors. The mode of cell death by Hecate-CGbeta conjugate was proven to be through necrosis. LHCGR and GATA-4 were co-expressed in tumors, where the treatment down-regulated their expression simultaneously, suggesting their possible use as tumor markers. In conclusion, the present thesis showed that Hecate-CGbeta conjugate targets its action selectively through LHCGR and selectively kills the LHCGR bearing tumor cells. It works both in gonadal somatic and in ectopic LHCGR bearing adrenal tumors. These results establish a more general principle that receptors expressed ectopically in malignant cells can be exploited in targeted cytotoxic therapies without affecting the normal healthy cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an experimental study regarding the identification and discrimination of vowels, studied using synthetic stimuli. The acoustic attributes of synthetic stimuli vary, which raises the question of how different spectral attributes are linked to the behaviour of the subjects. The spectral attributes used are formants and spectral moments (centre of gravity, standard deviation, skewness and kurtosis). Two types of experiments are used, related to the identification and discrimination of the stimuli, respectively. The discrimination is studied by using both the attentive procedures that require a response from the subject, and the preattentive procedures that require no response. Together, the studies offer information about the identification and discrimination of synthetic vowels in 15 different languages. Furthermore, this thesis discusses the role of various spectral attributes in the speech perception processes. The thesis is divided into three studies. The first is based only on attentive methods, whereas the other two concentrate on the relationship between identification and discrimination experiments. The neurophysiological methods (EEG recordings) reveal the role of attention in processing, and are used in discrimination experiments, while the results reveal differences in perceptual processes based on the language, attention and experimental procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lycopodium alkaloids are a structurally diverse group of natural products isolated from Lycopodium with important biological effects for the potential treatment of cancer and severe neurodegenerative diseases. To date, full biological studies have been hampered by lack of material from natural sources. Total synthesis represents a possible solution to meet this demand as well as the most effective way to design new compounds to determine structural activity relationships and obtain more potent compounds. The aim of this chapter is to summarise the work carried out in this field so far by presenting an overview of the synthetic strategies used to access each of the four key Lycopodium alkaloid types. Particular emphasis has been placed on methods that rapidly construct each nucleus utilizing tandem reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lycopodium alkaloids are a structurally diverse group of natural products isolated from Lycopodium with important biological effects for the potential treatment of cancer and severe neurodegenerative diseases. To date, full biological studies have been hampered by lack of material from natural sources. Total synthesis represents a possible solution to meet this demand as well as the most effective way to design new compounds to determine structural activity relationships and obtain more potent compounds. The aim of this chapter is to summarise the work carried out in this field so far by presenting an overview of the synthetic strategies used to access each of the four key Lycopodium alkaloid types. Particular emphasis has been placed on methods that rapidly construct each nucleus utilizing tandem reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper examines the international distribution of energy intensities as a conventional proxy indicator of energy efficiency and sustainability in the consumption of resources, by employing some descriptive tools from the analysis of inequality and polarization. The analysis specifically focuses on the following points: firstly, inequalities are evaluated synthetically based on diverse summary measures and Lorenz curves; secondly, different factorial decompositions are undertaken that assist in investigating some explanatory factors (weighting factors, multiplicative factors and decomposition by groups); and thirdly, an analysis is made of the polarization of intensities when groups of countries are defined endogenously and exogenously. The results obtained have significant implications from both academic and political perspectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive syntheticpeptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene)-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC) of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene)-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.