948 resultados para synaptic vesicles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A post-embedding immunogold technique was used to examine the subcellular distribution of immunoreactivities to the invertebrate peptide, FMRFamide, and to vertebrate pancreatic polypeptide (PP) within the central nervous system of the trematode, Fasciola hepatica. Gold labeling of peptide was localised exclusively over both dense-cored and ellipsoidal electron-dense vesicles (with a homogeneous matrix) present within nerve cell bodies, small and 'giant' nerve processes of the neuropile in the cerebral ganglia and transverse commissure, as well as in the main longitudinal nerve cords. Double labeling demonstrated an apparent co-localisation of FMRFamide and PP immunoreactivities in the same dense-cored vesicles, although populations of ellipsoidal electron-dense vesicles that labeled solely for FMRFamide were also evident. Antigen pre-absorption studies indicated little, if any, cross-reactivity of the two antisera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific antisera, directed against the highly conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP) and the invertebrate peptide FMRFamide, have been used in conjunction with post-embedding, IgG-conjugated colloidal gold immunostaining to demonstrate peptide immunoreactivity at subcellular level in the nervous system of adult Diclidophora merlangi. Gold labelling revealed that immunoreactivity for PP and FMRFamide was localized exclusively in dense-cored vesicles occupying the majority of axons in the central nervous system. Double-labelling demonstrated an apparent co-localization of PP and FMRFamide in the same dense-cored vesicles. Antigen preabsorption experiments indicated cross-reactivity of the two antisera as unlikely, and that some if not all of the PP/FMRFamide immunostaining in the parasite was due to a neuropeptide F-like peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resident microbiota of the human gastrointestinal (GI) tract is comprised of ~2,000 bacterial species, the majority of which are anaerobes. Colonization of the GI tract is important for normal development of the immune system and provides a reservoir of catabolic enzymes that degrade ingested plant polysaccharides. Bacteroides fragilis is an important member of the microbiota because it contributes to T helper cell development, but is also the most frequently isolated Gram-negative anaerobe from clinical infections. During the annotation of the B. fragilis genome sequence, we identified a gene predicted to encode a homolog of the eukaryotic protein modifier, ubiquitin. Previously, ubiquitin had only been found in eukaryotes, indicating the bacterial acquisition as a potential inter-kingdom horizontal gene transfer event. Here we discuss the possible roles of B. fragilis ubiquitin and the implications for health and disease. © 2012 Landes Bioscience

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, 9 FMRF amide-related peptides (FaRPs) have been identified in Caenorhabditis elegans. Eight of these peptides are encoded on the flp-1 gene. However, AF2 (KHEYLRF amide) which was not co-encoded was the most abundant FaRP identified in ethanolic extracts. Further radioimmunometrical screening of acidified ethanol extracts of C. elegans has revealed the presence of other novel FaRPs, which are not encoded on the flp-l gene. One of these peptides has been isolated by sequential rpHPLC and subjected to Edman degradation analysis and gas-phase sequencing and the unequivocal primary structure of the decapeptide Ala-Pro-Glu-Ala-Ser-Pro-Phe-Ile-Arg-Phe-NH2 was determined following a single gas-phase sequencing run. The molecular mass of the peptide was found to be 1133.7 Ha, determined using a time-of-flight mass spectrometer. Synthetic replicates of this peptide were found to induce a profound relaxation of both dorsal and ventral somatic muscle-strip preparations of Ascaris suum with a threshold for activity of 10 nM. The inhibitory response was not dependent on the presence of nerve cords, indicating a post-synaptic site-of-action. The relaxation was Ca++- and Cl--independent but was abolished in high-KI medium and could be distinguished from those of other inhibitory nematode FaRPs, including PF1 (SDPNFLRFamide)and PF1 (KPNFIRF amide). (C) 1997 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade it has become clear that the nervous systems of platyhelminths are both complex and highly developed, particularly in peptidergic elements. The central position of an ancestral flatworm in the evolution of the Bilateria has placed a greater importance on the study of modern flatworms. Using antisera generated to the C-terminal region of platyhelminth neuropeptide F and the molluscan neuropeptide, FMRFamide, in immunocytochemistry at both Light and ultrastructural levels, immunoreactivities have been localised within the nervous systems of three species of triclad turbellarians, Dugesia lugubris, Dendrocoelum lacteum, and Polycelis nigra, and one species of monogenean trematode, Diclidophora merlangi. Extensive immunostaining was obtained with both antisera throughout the central and peripheral nervous systems of all species studied, but intensity and abundance was significantly greater in the turbellarians. Indirect electron-immunogold labeling demonstrated that immunoreactivity to both neuropeptides was often colocalised in neurosecretory vesicles, although discrete populations of vesicles were also observed. Radioimmunoassay of extracts of all species confirmed that neuropeptide F immunoreactivity was consistently more abundant than FMRFamide immunoreactivity, and that the levels of both in the three turbellarians were several orders of magnitude greater than those found in the monogenean. Chromatographic analyses of turbellarian extracts revealed that neuropeptide F and FMRFamide immunoreactivities were attributable to different peptides. These data imply that the neuropeptidergic systems of turbellarians are considerably more extensive than those of monogeneans, and would suggest that a regression has occurred in the latter as a consequence of the adoption of a more sedentary parasitic lifestyle. (C) 1995 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunochemical techniques were used to determine the distribution, chemical characteristics and relative abundance of immunoreactivity (IR) to two native platyhelminth neuropeptides, neuropeptide F (NPF) (Moniezia expansa) and the FMRFamide-related peptide (FaRP), GNFFRFamide, in the trematodes, Fasciola hepatica and Schistosoma mansoni; the larger S. margrebowiei was used in the chemical analysis. Extensive immunostaining for the two peptides was demonstrated throughout the nervous systems of both F. hepatica and S. mansoni, with strong IR also in the innervation of muscular structures, including those associated with the egg-forming apparatus. The patterns of immunostaining were similar to those previously described for the vertebrate neuropeptide Y superfamily of peptides and for FMRFamide. Ultrastructurally, gold labelling of NPF- and GNFFRFamide-IRs was localized exclusively to the contents of secretory vesicles in the axons and somatic cytoplasm of neurones. Double-labelling experiments showed an apparent homogeneity of antigenic sites, in all probability due to the demonstrated cross-reactivity of the FaRP antiserum with NPF. Radioimmunoassay of acid-ethanol extracts of the worms detected 8.3 pmol/g and 4.7 pmol/g equivalents of NPF- and FMRFamide-IRs, respectively, for F. hepatica, and corresponding values of 4.9 pmol/g and 4.3 pmol/g equivalents for S. margrebowiei. Gel-permeation chromatography resolved IR to both peptides in discrete peaks and these eluted in similar positions to synthetic NPF (M. expansa) and GNFFRFamide, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indirect immunocytochemistry, in conjunction with confocal scanning laser microscopy and electron-microscopic immunogold labeling, has been used to localize neuropeptide and 5-hydroxytryptamine (5-HT) immunereactivities (IRs) in the plerocercoid (scolex and surrounding blastocyst) of the trypanorhynch tapeworm, Grillotia erinaceus. Antisera directed to two native cestode neuropeptides, neuropeptide F and the FMRFamide-related peptide, GNFFRFamide, were used to demonstrate the presence of a well-developed and extensive peptide-immunoreactive nervous system of central and peripheral elements in the juvenile scolex. Neuronal connectivity exists between the scolex and the surrounding blastocyst, in which there is a rich innervation of varicose fibers displaying peptide IR. Ultrastructurally, gold labeling of the peptide IR was found exclusively over the contents of dense secretory vesicles in the axons and somatic cytoplasm of neurons. Double-labeling experiments demonstrated an apparent colocalization of peptide IR, although the results of antigen preadsorption procedures indicated substantial cross-reactivity of the two antisera. A separate and well-differentiated 5-HT-immunoreactive nervous system, with a similar anatomical arrangement as the peptide-immunoreactive nervous system, is present in both the scolex and blastocyst (C) 1994 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electron immunogold-labeling technique was used in conjunction with a post-embedding procedure to demonstrate for the first time the ultrastructural distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF), in the nervous system of the cestode Moniezia expansa. Two axon types, distinguished by their populations of different-sized electron-dense vesicles, were identified. Immunogold labeling demonstrated an apparent homogeneity of PP, FMRFamide and NPF (M. expansa) antigenic sites throughout the larger dense-cored vesicles within the central nervous system. Triple labeling clearly demonstrated the co-localisation of immunoreactivities (IR) for NPF, PP and FMRFamide within the same dense-cored vesicles. The presence of NPF-IR within the vesicles occupying the perikaryon of the neuronal cell body indicated that the peptides had undergone post-translational C-terminal amidation prior to entering the axon. Antigen pre-absorption experiments using NPF prevented labeling with either PP or FMRFamide antisera, and the failure of these antisera to block NPF-IR supports the view that some, if not all, of the PP/FMRFamide-IR is due to NPF-like peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localisation and distribution of neuropeptide F (NPF)-immunoreactivity (IR) in the monogenean fish-gill parasite, Diclidophora merlangi, have been investigated by whole-mount immunocytochemistry interfaced with confocal scanning laser microscopy and, at the ultrastructural level, by indirect immunogold labeling. Using antisera directed to intact synthetic NPF (Moniezia expansa, residues 1-39) or to the C-terminal decapeptide (residues 30-39) of synthetic NPF (M. expansa), immunostaining was found throughout the central (CNS) and peripheral nervous systems (PNS), including the innervation of the reproductive system. Immunoreactivity was found to be more intense using the antiserum to the C-terminal decapeptide fragment of NPF. At the subcellular level, gold labeling of NPF-IR was found exclusively over the contents of dense-cored vesicles that occupied nerve axons of both the CNS and the PNS. The distribution pattern of immunostaining for NPF mirrored exactly that previously documented for the vertebrate pancreatic polypeptide (PP) family of peptides and for FMRFamide. This finding and the results of preabsorption experiments strongly suggest that NPF is the predominant native neuropeptide in D. merlangi and that it accounts for most of the immunostaining previously obtained with PP and FMRFamide antisera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.

Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.

Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.

Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported.

Results: Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146a overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cell types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p).

Conclusion: The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES:
Quaternary ammonium compounds (QACs) are used extensively as biocides and their misuse may be contributing to the development of bacterial resistance. Although the major intrinsic resistance to QACs of Gram-negative bacteria is mediated by the action of tripartite multidrug transporters of the resistance-nodulation-division family, we aimed to test if the promiscuity of the recently characterized major facilitator superfamily multidrug transporter, MdtM, from Escherichia coli enabled it also to function in the efflux of QACs.
METHODS:
The ability of the major facilitator mdtM gene product, when overexpressed from multicopy plasmid, to protect E. coli cells from the toxic effects of a panel of seven QACs was determined using growth inhibition assays in liquid medium. Interaction between QACs and MdtM was studied by a combination of substrate binding assays using purified protein in detergent solution and transport assays using inverted vesicles.
RESULTS:
E. coli cells that overproduced MdtM were less susceptible to the cytotoxic effects of each of the QACs tested compared with cells that did not overproduce the transporter. Purified MdtM bound each QAC with micromolar affinity and the protein utilized the electrochemical proton gradient to transport QACs across the cytoplasmic membrane. Furthermore, the results suggested a functional interaction between MdtM and the tripartite resistance-nodulation-division family AcrAB-TolC efflux system.
CONCLUSIONS:
The results support a hitherto unidentified capacity for a single-component multidrug transporter of the major facilitator superfamily, MdtM, to function in the efflux of a broad range of QACs and thus contribute to the intrinsic resistance of E. coli to these compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligomers of beta-amyloid (Aß) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aß-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aß monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aß1-42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aß1-42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aß and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis.
Results: Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress.
Conclusions: Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To describe endothelial changes associated with emulsified silicone oil. Methods. Report of a case. Results. A 77-year-old man had multiple and diffuse clear vesicles on the endothelium of his left eye (LE). The cornea was clear and thin. He had undergone pars plana vitrectomy and intraocular silicone oil injection 5 years before presentation. Specular microscopy revealed numerous small bubbles of emulsified silicone oil and a mild degree of endothelial damage. Conclusion. Emulsified silicone oil can adhere to the endothelium and induce an apparent droplet-like endotheliopathy.