901 resultados para sugar-acid content
Resumo:
Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants.
Resumo:
Abscisic acid (ABA), a cleavage product of carotenoids, is involved in stress responses in plants. A well known response of plants to water stress is accumulation of ABA, which is caused by de novo synthesis. The limiting step of ABA biosynthesis in plants is presumably the cleavage of 9-cis-epoxycarotenoids, the first committed step of ABA biosynthesis. This step generates the C15 intermediate xanthoxin and C25-apocarotenoids. A cDNA, PvNCED1, was cloned from wilted bean (Phaseolus vulgaris L.) leaves. The 2,398-bp full-length PvNCED1 has an ORF of 615 aa and encodes a 68-kDa protein. The PvNCED1 protein is imported into chloroplasts, where it is associated with the thylakoids. The recombinant protein PvNCED1 catalyzes the cleavage of 9-cis-violaxanthin and 9′-cis-neoxanthin, so that the enzyme is referred to as 9-cis-epoxycarotenoid dioxygenase. When detached bean leaves were water stressed, ABA accumulation was preceded by large increases in PvNCED1 mRNA and protein levels. Conversely, rehydration of stressed leaves caused a rapid decrease in PvNCED1 mRNA, protein, and ABA levels. In bean roots, a similar correlation among PvNCED1 mRNA, protein, and ABA levels was observed. However, the ABA content was much less than in leaves, presumably because of the much smaller carotenoid precursor pool in roots than in leaves. At 7°C, PvNCED1 mRNA and ABA were slowly induced by water stress, but, at 2°C, neither accumulated. The results provide evidence that drought-induced ABA biosynthesis is regulated by the 9-cis-epoxycarotenoid cleavage reaction and that this reaction takes place in the thylakoids, where the carotenoid substrate is located.
Resumo:
It is proposed that an important function of leptin is to confine the storage of triglycerides (TG) to the adipocytes, while limiting TG storage in nonadipocytes, thus protecting them from lipotoxicity. The fact that TG content in nonadipocytes normally remains within a narrow range, while that of adipocytes varies enormously with food intake, is consistent with a system of TG homeostasis in normal nonadipocytes. The facts that when leptin receptors are dysfunctional, TG content in nonadipocytes such as islets can increase 100-fold, and that constitutively expressed ectopic hyperleptinemia depletes TG, suggest that leptin controls the homeostatic system for intracellular TG. The fact that the function and viability of nonadipocytes is compromised when their TG content rises above or falls below the normal range suggests that normal homeostasis of their intracellular TG is critical for optimal function and to prevent lipoapoptosis. Thus far, lipotoxic diabetes of fa/fa Zucker diabetic fatty rats is the only proven lipodegenerative disease, but the possibility of lipotoxic disease of skeletal and/or cardiac muscle may require investigation, as does the possible influence of the intracellular TG content on autoimmune and neoplastic processes.
Resumo:
γ-Hydroxybutyrate (GHB), an anesthetic adjuvant analog of γ-aminobutyrate (GABA), depresses cell excitability in hippocampal neurons by inducing hyperpolarization through the activation of a prominent inwardly rectifying K+ (Kir3) conductance. These GABA type B (GABAB)-like effects are clearly shown at high concentrations of GHB corresponding to blood levels usually reached during anesthesia and are mimicked by the GABAB agonist baclofen. Recent studies of native GABAB receptors (GABABRs) have favored the concept that GHB is also a selective agonist. Furthermore, cloning has demonstrated that GABABRs assemble heteromeric complexes from the GABABR1 and GABABR2 subtypes and that these assemblies are activated by GHB. The surprisingly high tissue content, together with anti-ischemic and protective effects of GHB in the heart, raises the question of a possible influence of GABAB agonists on excitable cardiac cells. In the present study, we provide electrophysiological evidence that GHB activates an inwardly rectifying K+ current in rat ventricular myocytes. This effect is mimicked by baclofen, reversibly inhibited by GABAB antagonists, and prevented by pertussis toxin pretreatment. Both GABABR1 and GABABR2 are detected in cardiomyocytes by Western blotting and are shown to coimmunoprecipitate. Laser scanning confocal microscopy discloses an even distribution of the two receptors in the sarcolemma and along the transverse tubular system. Hence, we conclude that GABABRs are distributed not only in neuronal tissues but also in the heart, where they can be activated and induce electrophysiological alterations through G-protein-coupled inward rectifier potassium channels.
Resumo:
We report here the construction, characterization, and application of a bacterial bioreporter for fructose and sucrose that was designed to monitor the availability of these sugars to microbial colonizers of the phyllosphere. Plasmid pPfruB-gfp[AAV] carries the Escherichia coli fruB promoter upstream from the gfp[AAV] allele that codes for an unstable variant of green fluorescent protein (GFP). In Erwinia herbicola, this plasmid brings about the accumulation of GFP fluorescence in response to both fructose and sucrose. Cells of E. herbicola (pPfruB-gfp[AAV]) were sprayed onto bean plants, recovered from leaves at various time intervals after inoculation, and analyzed individually for GFP content by quantitative analysis of digital microscope images. We observed a positive correlation between single-cell GFP accumulation and ribosomal content as determined by fluorescence in situ hybridization, indicating that foliar growth of E. herbicola occurred at the expense of fructose and/or sucrose. One hour after inoculation, nearly all bioreporter cells appeared to be actively engaged in fructose consumption. This fraction dropped to approximately 11% after 7 h and to ≈1% a day after inoculation. This pattern suggests a highly heterogeneous availability of fructose to individual E. herbicola cells as they colonize the phyllosphere. We estimated that individual cells were exposed to local initial fructose abundances ranging from less than 0.15 pg fructose to more than 4.6 pg.
Resumo:
Heterozygous reeler mice (HRM) haploinsufficient for reelin express ≈50% of the brain reelin content of wild-type mice, but are phenotypically different from both wild-type mice and homozygous reeler mice. They exhibit, (i) a down-regulation of glutamic acid decarboxylase 67 (GAD67)-positive neurons in some but not every cortical layer of frontoparietal cortex (FPC), (ii) an increase of neuronal packing density and a decrease of cortical thickness because of neuropil hypoplasia, (iii) a decrease of dendritic spine expression density on basal and apical dendritic branches of motor FPC layer III pyramidal neurons, and (iv) a similar decrease in dendritic spines expressed on the basal dendrite branches of CA1 pyramidal neurons of the hippocampus. To establish whether the defect of GAD67 down-regulation observed in HRM is responsible for neuropil hypoplasia and decreased dendritic spine density, we studied heterozygous GAD67 knockout mice (HG67M). These mice exhibited a down-regulation of GAD67 mRNA expression in FPC (about 50%), but they expressed normal amounts of reelin and had no neuropil hypoplasia or down-regulation of dendritic spine expression. These findings, coupled with electron-microscopic observations that reelin colocalizes with integrin receptors on dendritic spines, suggest that reelin may be a factor in the dynamic expression of cortical dendritic spines perhaps by promoting integrin receptor clustering. These findings are interesting because the brain neurochemical and neuroanatomical phenotypic traits exhibited by the HRM are in several ways similar to those found in postmortem brains of psychotic patients.
Resumo:
Caenorhabditis elegans sqv mutants are defective in vulval epithelial invagination and have a severe reduction in hermaphrodite fertility. The gene sqv-7 encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi membrane. A Golgi vesicle enriched fraction of Saccharomyces cerevisiae expressing SQV-7 transported UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose (Gal) in a temperature-dependent and saturable manner. These nucleotide sugars are competitive, alternate, noncooperative substrates. The two mutant sqv-7 missense alleles resulted in a severe reduction of these three transport activities. SQV-7 did not transport CMP-sialic acid, GDP-fucose, UDP-N-acetylglucosamine, UDP-glucose, or GDP-mannose. SQV-7 is able to transport UDP-Gal in vivo, as shown by its ability to complement the phenotype of Madin-Darby canine kidney ricin resistant cells, a mammalian cell line deficient in UDP-Gal transport into the Golgi. These results demonstrate that unlike most nucleotide sugar transporters, SQV-7 can transport multiple distinct nucleotide sugars. We propose that SQV-7 translocates multiple nucleotide sugars into the Golgi lumen for the biosynthesis of glycoconjugates that play a pivotal role in development.
Resumo:
The global amino acid compositions as deduced from the complete genomic sequences of six thermophilic archaea, two thermophilic bacteria, 17 mesophilic bacteria and two eukaryotic species were analysed by hierarchical clustering and principal components analysis. Both methods showed an influence of several factors on amino acid composition. Although GC content has a dominant effect, thermophilic species can be identified by their global amino acid compositions alone. This study presents a careful statistical analysis of factors that affect amino acid composition and also yielded specific features of the average amino acid composition of thermophilic species. Moreover, we introduce the first example of a ‘compositional tree’ of species that takes into account not only homologous proteins, but also proteins unique to particular species. We expect this simple yet novel approach to be a useful additional tool for the study of phylogeny at the genome level.
Resumo:
We evaluated lignin profiles and pulping performances of 2-year-old transgenic poplar (Populus tremula × Populus alba) lines severely altered in the expression of caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) or cinnamyl alcohol dehydrogenase (CAD). Transgenic poplars with CAD or COMT antisense constructs showed growth similar to control trees. CAD down-regulated poplars displayed a red coloration mainly in the outer xylem. A 90% lower COMT activity did not change lignin content but dramatically increased the frequency of guaiacyl units and resistant biphenyl linkages in lignin. This alteration severely lowered the efficiency of kraft pulping. The Klason lignin level of CAD-transformed poplars was slightly lower than that of the control. Whereas CAD down-regulation did not change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the proportion of syringaldehyde and diarylpropane structures and, more importantly with regard to kraft pulping, of free phenolic groups in lignin. In the most depressed line, ASCAD21, a substantially higher content in free phenolic units facilitated lignin solubilization and fragmentation during kraft pulping. These results point the way to genetic modification of lignin structure to improve wood quality for the pulp industry.
Resumo:
The content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Et; EC 4.1.1.39) measured in different-aged leaves of sunflower (Helianthus annuus) and other plants grown under different light intensities, varied from 2 to 75 μmol active sites m−2. Mesophyll conductance (μ) was measured under 1.5% O2, as well as postillumination CO2 uptake (assimilatory charge, a gas-exchange measure of the ribulose-1,5-bisphosphate pool). The dependence of μ on Et saturated at Et = 30 μmol active sites m−2 and μ = 11 mm s−1 in high-light-grown leaves. In low-light-grown leaves the dependence tended toward saturation at similar Et but reached a μ of only 6 to 8 mm s−1. μ was proportional to the assimilatory charge, with the proportionality constant (specific carboxylation efficiency) between 0.04 and 0.075 μm−1 s−1. Our data show that the saturation of the relationship between Et and μ is caused by three limiting components: (a) the physical diffusion resistance (a minor limitation), (b) less than full activation of Rubisco (related to Rubisco activase and the slower diffusibility of Rubisco at high protein concentrations in the stroma), and (c) chloroplast metabolites, especially 3-phosphoglyceric acid and free inorganic phosphate, which control the reaction kinetics of ribulose-1,5-bisphosphate carboxylation by competitive binding to active sites.
Resumo:
The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.
Resumo:
Treatment of etiolated Vicia sativa seedlings by the plant hormone methyl jasmonate (MetJA) led to an increase of cytochrome P450 content. Seedlings that were treated for 48 h in a 1 mm solution of MetJA stimulated ω-hydroxylation of 12:0 (lauric acid) 14-fold compared with the control (153 versus 11 pmol min−1 mg−1 protein, respectively). Induction was dose dependent. The increase of activity (2.7-fold) was already detectable after 3 h of treatment. Activity increased as a function of time and reached a steady level after 24 h. Northern-blot analysis revealed that the transcripts coding for CYP94A1, a fatty acid ω-hydroxylase, had already accumulated after 1 h of exposure to MetJA and was maximal between 3 and 6 h. Under the same conditions, a study of the enzymatic hydrolysis of 9,10-epoxystearic acid showed that both microsomal and soluble epoxide hydrolase activities were not affected by MetJA treatment.
Resumo:
Elongation rates of barley (Hordeum vulgare L. cv Hanna) leaves decreased with decreasing soil water content, whereas the pH of xylem sap increased from 5.9 to 6.9 over 6 d as the soil dried. The reduction in leaf-elongation rate (LER) was correlated with the increase in sap pH. Artificial sap buffered to different pH values was fed via the subcrown internode to derooted seedlings. Although leaves elongated at in planta rates when fed artificial sap at a well-watered pH of 6.0, LER declined with increasing sap pH. This effect persisted in the light and in the dark. pH had no effect on the relative water content or the bulk abscisic acid (ABA) concentration of the growing zone of these leaves. LERs of the ABA-deficient mutant Az34 were uniformly high over the pH range tested, whereas those of its isogenic wild-type cultivar Steptoe were reduced as the artificial sap pH was increased from 6.0 to 7.0. However, supplying a well-watered concentration of ABA (3 × 10−8 m) in the artificial xylem sap restored the pH response of the Az34 mutant. The results suggest that increased xylem sap pH acts as a drought signal to reduce LER via an ABA-dependent mechanism.
Resumo:
The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes increase from the first to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin. Alfalfa CCOMT is highly similar at the amino acid sequence level to the CCOMT from parsley, although it contains a six-amino acid insertion near the N terminus. Transcripts encoding both COMT and CCOMT are primarily localized to vascular tissue in alfalfa stems. Alfalfa CCOMT expressed in Escherichia coli catalyzes O-methylation of caffeoyl and 5-hydroxyferuloyl CoA, with preference for caffeoyl CoA. It has low activity against the free acids. COMT expressed in E. coli is active against both caffeic and 5-hydroxyferulic acids, with preference for the latter compound. Surprisingly, very little extractable O-methyltransferase activity versus 5-hydroxyferuloyl CoA is present in alfalfa stem internodes, in which relative O-methyltransferase activity against 5-hy-droxyferulic acid increases with increasing maturity, correlating with increased lignin methoxyl content.
Resumo:
Spraying mustard (Sinapis alba L.) seedlings with salicylic acid (SA) solutions between 10 and 500 μm significantly improved their tolerance to a subsequent heat shock at 55°C for 1.5 h. The effects of SA were concentration dependent, with higher concentrations failing to induce thermotolerance. The time course of thermotolerance induced by 100 μm SA was similar to that obtained with seedlings acclimated at 45°C for 1 h. We examined the hypothesis that induced thermotolerance involved H2O2. Heat shock at 55°C caused a significant increase in endogenous H2O2 and reduced catalase activity. A peak in H2O2 content was observed within 5 min of either SA treatment or transfer to the 45°C acclimation temperature. Between 2 and 3 h after SA treatment or heat acclimation, both H2O2 and catalase activity significantly decreased below control levels. The lowered H2O2 content and catalase activity occurred in the period of maximum thermoprotection. It is suggested that thermoprotection obtained either by spraying SA or by heat acclimation may be achieved by a common signal transduction pathway involving an early increase in H2O2.