998 resultados para stochastic methods
Resumo:
This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.
Resumo:
Two main approaches are commonly used to empirically evaluate linear factor pricingmodels: regression and SDF methods, with centred and uncentred versions of the latter.We show that unlike standard two-step or iterated GMM procedures, single-step estimatorssuch as continuously updated GMM yield numerically identical values for prices of risk,pricing errors, Jensen s alphas and overidentifying restrictions tests irrespective of the modelvalidity. Therefore, there is arguably a single approach regardless of the factors being tradedor not, or the use of excess or gross returns. We illustrate our results by revisiting Lustigand Verdelhan s (2007) empirical analysis of currency returns.
Resumo:
This paper analyzes empirically the volatility of consumption-based stochastic discount factors as a measure of implicit economic fears by studying its relationship with future economic and stock market cycles. Time-varying economic fears seem to be well captured by the volatility of stochastic discount factors. In particular, the volatility of recursive utility-based stochastic discount factor with contemporaneous growth explains between 9 and 34 percent of future changes in industrial production at short and long horizons respectively. They also explain ex-ante uncertainty and risk aversion. However, future stock market cycles are better explained by a similar stochastic discount factor with long-run consumption growth. This specification of the stochastic discount factor presents higher volatility and lower pricing errors than the specification with contemporaneous consumption growth.
Resumo:
This paper estimates a translog stochastic frontier production function in the analysis of all 48 contiguous U.S. states in the period 1970-1983, to attempt to measure and explain changes in technical efficiency. The model allows technical inefficiency to vary over time, and inefficiency effects to be a function of a set of explanatory variables in which the level and composition of public capital plays an important role. Results indicated that U.S. state inefficiency levels were significantly and positively correlated with the ratio of public capital to private capital. The proportion of public capital devoted to highways is negatively correlated with technical inefficiency, suggesting that not only the level but also the composition of public capital influenced state efficiency.
Resumo:
In this paper we consider dynamic processes, in repeated games, that are subject to the natural informational restriction of uncoupledness. We study the almost sure convergence to Nash equilibria, and present a number of possibility and impossibility results. Basically, we show that if in addition to random moves some recall is introduced, then successful search procedures that are uncoupled can be devised. In particular, to get almost sure convergence to pure Nash equilibria when these exist, it su±ces to recall the last two periods of play.
Resumo:
A general formalism on stochastic choice is presented. Tje Rationalizability and Recoverability (Identification) problems are discussed. For the identification issue parametric examples are analyzed by means of techniques of mathematical tomography (Random transforms).
Resumo:
Consider the density of the solution $X(t,x)$ of a stochastic heat equation with small noise at a fixed $t\in [0,T]$, $x \in [0,1]$.In the paper we study the asymptotics of this density as the noise is vanishing. A kind of Taylor expansion in powers of the noiseparameter is obtained. The coefficients and the residue of the expansion are explicitly calculated.In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximatingprocess and the limit one is proved. Also a suitable local integration by parts formula is developped.
Resumo:
The paper contrasts empirically the results of alternative methods for estimating thevalue and the depreciation of mineral resources. The historical data of Mexico andVenezuela, covering the period 1920s-1980s, is used to contrast the results of severalmethods. These are the present value, the net price method, the user cost method andthe imputed income method. The paper establishes that the net price and the user costare not competing methods as such, but alternative adjustments to different scenariosof closed and open economies. The results prove that the biases of the methods, ascommonly described in the theoretical literature, only hold under the most restrictedscenario of constant rents over time. It is argued that the difference between what isexpected to happen and what actually did happen is for the most part due to a missingvariable, namely technological change. This is an important caveat to therecommendations made based on these models.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
By means of Malliavin Calculus we see that the classical Hull and White formulafor option pricing can be extended to the case where the noise driving thevolatility process is correlated with the noise driving the stock prices. Thisextension will allow us to construct option pricing approximation formulas.Numerical examples are presented.
Resumo:
Consider the problem of testing k hypotheses simultaneously. In this paper,we discuss finite and large sample theory of stepdown methods that providecontrol of the familywise error rate (FWE). In order to improve upon theBonferroni method or Holm's (1979) stepdown method, Westfall and Young(1993) make eective use of resampling to construct stepdown methods thatimplicitly estimate the dependence structure of the test statistics. However,their methods depend on an assumption called subset pivotality. The goalof this paper is to construct general stepdown methods that do not requiresuch an assumption. In order to accomplish this, we take a close look atwhat makes stepdown procedures work, and a key component is a monotonicityrequirement of critical values. By imposing such monotonicity on estimatedcritical values (which is not an assumption on the model but an assumptionon the method), it is demonstrated that the problem of constructing a validmultiple test procedure which controls the FWE can be reduced to the problemof contructing a single test which controls the usual probability of a Type 1error. This reduction allows us to draw upon an enormous resamplingliterature as a general means of test contruction.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.