884 resultados para stochastic dynamic systems
Resumo:
This work quantifies the nature of delays in genetic regulatory networks and their effect on system dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic (probability density function) and deterministic setting (impulse function), whilst being shown to be equivalent under different assumptions. The dependence of the distribution properties on rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution of the delay in the context of protein production processes is shown to be highly dependent on the size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have delay distributions with a smaller relative variance, and hence, less uncertainty in the completion times, however, they lead to larger delays. On the other hand large uncertainties may actually play a positive role, as broader distributions can lead to larger stability regions when this formalization of the protein production delays is incorporated into a feedback system.
Furthermore, evidence suggests that delays may play a role as an explicit design into existing controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabilizing effects through a control theoretic approach. Lastly, a distributed delay based controller design method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback system re-emerges as an effective controller design.
Resumo:
Automatic recording instruments provide the ideal means of recording the responses of rivers, lakes and reservoirs to short-term changes in the weather. As part of the project ‘Using Automatic Monitoring and Dynamic Modelling for the Active Management of Lakes and Reservoirs', a family of three automatic monitoring stations were designed by engineers at the Centre for Ecology and Hydrology in Windermere to monitor such responses. In this article, the authors describe this instrument network in some detail and present case studies that illustrate the value of high resolution automatic monitoring in both catchment and reservoir applications.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
Resumo:
H. J. Kushner has obtained the differential equation satisfied by the optimal feedback control law for a stochastic control system in which the plant dynamics and observations are perturbed by independent additive Gaussian white noise processes. However, the differentiation includes the first and second functional derivatives and, except for a restricted set of systems, is too complex to solve with present techniques.
This investigation studies the optimal control law for the open loop system and incorporates it in a sub-optimal feedback control law. This suboptimal control law's performance is at least as good as that of the optimal control function and satisfies a differential equation involving only the first functional derivative. The solution of this equation is equivalent to solving two two-point boundary valued integro-partial differential equations. An approximate solution has advantages over the conventional approximate solution of Kushner's equation.
As a result of this study, well known results of deterministic optimal control are deduced from the analysis of optimal open loop control.
Resumo:
The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.
This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.
Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
The coastal geomorphological processes of alongshore transport and tidal currents are interacting with the attendant influences of sea-level rise and sediment supply to generate morphosedimentary units in selected estuarine systems. Constrained by the conditions promoted by microtidal situations in barrier island settings, vectors of sediment transport have established spatial sequences of morphologies and sediment types that are components of shellfish habitats. Greater depth and decreasing grain-size toward the mainland are common characteristics in five northeastern U.S. estuarine systems. The patterns are repeated at various scales among the lagoon-type estuaries as well as within the estuarine settings to establish geospatial associations of geomorphology and habitat.
Resumo:
An asymptotic recovery design procedure is proposed for square, discrete-time, linear, time-invariant multivariable systems, which allows a state-feedback design to be approximately recovered by a dynamic output feedback scheme. Both the case of negligible processing time (compared to the sampling interval) and of significant processing time are discussed. In the former case, it is possible to obtain perfect. © 1985 IEEE.
Resumo:
The authors demonstrate that a widely proposed method of robot dynamic control can be inherently unstable, due to an algebraic feedback loop condition causing an ill-posed feedback system. By focussing on the concept of ill-posedness a necessary and sufficient condition is derived for instability in robot manipulator systems which incorporate online acceleration cross-coupling control. Also demonstrated is a quasilinear multivariable control framework useful for assessing the robustness of this type of control when the instability condition is not obeyed.
Resumo:
Monolithic multisection mode-locked semiconductor lasers with an integrated distributed Bragg reflector (DBR) have recently been demonstrated to generate stable picosecond pulses at high repetition rates suitable for optical communication systems. However, there has been very little theoretical work on understanding the physical mechanisms of the device and on optimisation of the absorber modulator design. This article presents numerical modeling of the loss modulated mode-locking process in these lasers. The model predicts most aspects experimentally observed within this type of device, and the results show the output waveform, optical spectrum, instantaneous frequency chirp, and stable operating range.