962 resultados para step-down method
Resumo:
The aim of this study was to develop and trial a method to monitor the evolution of clinical reasoning in a PBL curriculum that is suitable for use in a large medical school. Termed Clinical Reasoning Problems (CRPs), it is based on the notion that clinical reasoning is dependent on the identification and correct interpretation of certain critical clinical features. Each problem consists of a clinical scenario comprising presentation, history and physical examination. Based on this information, subjects are asked to nominate the two most likely diagnoses and to list the clinical features that they considered in formulating their diagnoses, indicating whether these features supported or opposed the nominated diagnoses. Students at different levels of medical training completed a set of 10 CRPs as well as the Diagnostic Thinking Inventory, a self-reporting questionnaire designed to assess reasoning style. Responses were scored against those of a reference group of general practitioners. Results indicate that the CRPs are an easily administered, reliable and valid assessment of clinical reasoning, able to successfully monitor its development throughout medical training. Consequently, they can be employed to assess clinical reasoning skill in individual students and to evaluate the success of undergraduate medical schools in providing effective tuition in clinical reasoning.
Laying Down the Ladder: A typology of public participation in Australian natural resource management
Resumo:
We investigate spectral functions extracted using the maximum entropy method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma, and massive pseudoscalar meson; our results confirm the Goldstone nature of the π and permit an estimate of the meson binding energy. We have, however, seen no signal of σ→ππ decay as the chiral limit is approached. In the symmetric phase we observe a resonance of nonzero width in qualitative agreement with analytic expectations; in addition the ultraviolet behavior of the spectral functions is consistent with the large nonperturbative anomalous dimension for fermion composite operators expected in this model.
Resumo:
This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.
Resumo:
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model.
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
Many large-scale stochastic systems, such as telecommunications networks, can be modelled using a continuous-time Markov chain. However, it is frequently the case that a satisfactory analysis of their time-dependent, or even equilibrium, behaviour is impossible. In this paper, we propose a new method of analyzing Markovian models, whereby the existing transition structure is replaced by a more amenable one. Using rates of transition given by the equilibrium expected rates of the corresponding transitions of the original chain, we are able to approximate its behaviour. We present two formulations of the idea of expected rates. The first provides a method for analysing time-dependent behaviour, while the second provides a highly accurate means of analysing equilibrium behaviour. We shall illustrate our approach with reference to a variety of models, giving particular attention to queueing and loss networks. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A supersweet sweet corn hybrid, Pacific H5, was planted at weekly intervals (P-1 to P-5) in spring in South-Eastern Queensland. All plantings were harvested at the same time resulting in immature seed for the last planting (P-5). The seed was handled by three methods: manual harvest and processing (M-1), manual harvest and mechanical processing (M-2) and mechanical harvest and processing (M-3), and later graded into three sizes (small, medium and large). After eight months storage at 12-14degreesC, seed was maintained at 30degreesC with bimonthly monitoring of germination for fourteen months and seed damage at the end of this period. Seed quality was greatest for M-1 and was reduced by mechanical processing but not by mechanical harvesting. Large and medium seed had higher germination due to greater storage reserves but also more seed damage during mechanical processing. Immature seed from premature harvest (P-5) had poor quality especially when processed mechanically and reinforced the need for harvested seed to be physiologically mature.