859 resultados para spleen injury


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary brain damage, following severe head injury is considered to be a major cause for bad outcome. Impressive reductions of the extent of brain damage in experimental studies have raised high expectations for cerebral neuroprotective treatment, in the clinic. Therefore multiple compounds were and are being evaluated in trials. In this review we discuss the pathomechanisms of traumatic brain damage, based upon their clinical importance. The role of hypothermia, mannitol, barbiturates, steroids, free radical scavengers, arachidonic acid inhibitors, calcium channel blockers, N-methyl-D-aspartate (NMDA) antagonists, and potassium channel blockers, will be discussed. The importance of a uniform strategic approach for evaluation of potentially interesting new compounds in clinical trials, to ameliorate outcome in patients with severe head injury, is proposed. To achieve this goal, two nonprofit organizations were founded: the European Brain Injury Consortium (EBIC) and the American Brain Injury Consortium (ABIC). Their aim lies in conducting better clinical trials, which incorporate lessons learned from previous trials, such that the succession of negative, or incomplete studies, as performed in previous years, will cease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: Early impairment of cerebral blood flow in patients with severe head injury correlates with poor brain tissue O2 delivery and may be an important cause of ischemic brain damage. The purpose of this study was to measure cerebral tissue PO2, lactate, and glucose in patients after severe head injury to determine the effect of increased tissue O2 achieved by increasing the fraction of inspired oxygen (FiO2). METHODS: In addition to standard monitoring of intracranial pressure and cerebral perfusion pressure, the authors continuously measured brain tissue PO2, PCO2, pH, and temperature in 22 patients with severe head injury. Microdialysis was performed to analyze lactate and glucose levels. In one cohort of 12 patients, the PaO2 was increased to 441+/-88 mm Hg over a period of 6 hours by raising the FiO2 from 35+/-5% to 100% in two stages. The results were analyzed and compared with the findings in a control cohort of 12 patients who received standard respiratory therapy (mean PaO2 136.4+/-22.1 mm Hg). The mean brain PO2 levels increased in the O2-treated patients up to 359+/-39% of the baseline level during the 6-hour FiO2 enhancement period, whereas the mean dialysate lactate levels decreased by 40% (p < 0.05). During this O2 enhancement period, glucose levels in brain tissue demonstrated a heterogeneous course. None of the monitored parameters in the control cohort showed significant variations during the entire observation period. CONCLUSIONS: Markedly elevated lactate levels in brain tissue are common after severe head injury. Increasing PaO2 to higher levels than necessary to saturate hemoglobin, as performed in the O2-treated cohort, appears to improve the O2 supply in brain tissue. During the early period after severe head injury, increased lactate levels in brain tissue were reduced by increasing FiO2. This may imply a shift to aerobic metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most important early pathomechanism in traumatic brain injury (TBI) is alteration of the resting membrane potential. This may be mediated via voltage, or agonist-dependent ion channels (e.g. glutamate-dependent channels). This may result in a consequent increase in metabolism with increased oxygen consumption, in order to try to restore ionic balance via the ATP-dependent pumps. We hypothesize that glutamate is an important agonist in this process and may induce an increase in lactate, potassium and brain tissue CO2, and hence a decrease in brain pH. Further we propose that an increase in lactate is thus not an indicator of anaerobic metabolic conditions as has been thought for many years. We therefore analyzed a total of 85 patients with TBI, Glasgow Coma Scale (GCS) < 8 using microdialysis, brain tissue oxygen, CO2 and pH monitoring. Cerebral blood flow studies (CBF) were performed to test the relationship between regional cerebral blood flow (rCBF) and the metabolic determinants. Glutamate was significantly correlated with lactate (p < 0.0001), potassium (p < 0.0001), brain tissue pH (p = 0.0005), and brain tissue CO2 (p = 0.006). rCBF was inversely correlated with glutamate, lactate and potassium. 44% of high lactate values were observed in brain with tissue oxygen values, above the threshold level for cell damage. These results support the hypothesis of a glutamate driven increase in metabolism, with secondary traumatic depolarization and possibly hyperglycolysis. Further, we demonstrate evidence for lactate production in aerobic conditions in humans after TBI. Finally, when reduced regional cerebral blood flow (rCBF) is observed, high dialysate glutamate, lactate and potassium values are usually seen, suggesting ischemia worsens these TBI-induced changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracerebral contusions can lead to regional ischemia caused by extensive release of excitotoxic aminoacids leading to increased cytotoxic brain edema and raised intracranial pressure. rCBF measurements might provide further information about the risk of ischemia within and around contusions. Therefore, the aim of the presented study was to compare the intra- and perilesional rCBF of hemorrhagic, non-hemorrhagic and mixed intracerebral contusions. In 44 patients, 60 stable Xenon-enhanced CT CBF-studies were performed (EtCO2 30 +/- 4 mmHg SD), initially 29 hours (39 studies) and subsequent 95 hours after injury (21 studies). All lesions were classified according to localization and lesion type using CT/MRI scans. The rCBF was calculated within and 1-cm adjacent to each lesion in CT-isodens brain. The rCBF within all contusions (n = 100) of 29 +/- 11 ml/100 g/min was significantly lower (p < 0.0001, Mann-Whitney U) compared to perilesional rCBF of 44 +/- 12 ml/100 g/min and intra/perilesional correlation was 0.4 (p < 0.0005). Hemorrhagic contusions showed an intra/perilesional rCBF of 31 +/- 11/44 +/- 13 ml/100 g/min (p < 0.005), non-hemorrhagic contusions 35 +/- 13/46 +/- 10 ml/100 g/min (p < 0.01). rCBF in mixed contusions (25 +/- 9/44 +/- 12 ml/100 g/min, p < 0.0001) was significantly lower compared to hemorrhagic and non-hemorrhagic contusions (p < 0.02). Intracontusional rCBF is significantly reduced to 29 +/- 11 ml/100 g/min but reduced below ischemic levels of 18 ml/100 g/min in only 16% of all contusions. Perilesional CBF in CT normal appearing brain closed to contusions is not critically reduced. Further differentiation of contusions demonstrates significantly lower rCBF in mixed contusions (defined by both hyper- and hypodense areas in the CT-scan) compared to hemorrhagic and non-hemorrhagic contusions. Mixed contusions may evolve from hemorrhagic contusions with secondary increased perilesional cytotoxic brain edema leading to reduced cerebral blood flow and altered brain metabolism. Therefore, the treatment of ICP might be individually modified by the measurement of intra- and pericontusional cerebral blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key role players of brain swelling seen after severe human head injury have only been partly determined. We used our human head injury data base to determine relationships between potassium, glutamate, lactate and cerebral blood flow (CBF). A total of 70 severely head injured patients (GCS < or = 8) were studied using intracerebral microdialysis to measure extracellular glutamate, potassium and lactate. Xenon CT was used to determine regional cerebral blood flow (rCBF). The mean +/- SEM of the r value of all patients, between potassium and glutamate, and potassium and lactate was 0.25 +/- 0.04 (p < 0.0001) and 0.17 +/- 0.06 (p = 0.006), respectively, demonstrating in both cases a positive relationship. rCBF was negatively correlated with potassium with marginal significance (r = -0.35, p = 0.08). When separated into two groups, patients with contusion had higher potassium levels than patients without contusion (1.55 +/- 0.03 mmol/l versus 1.26 +/- 0.02 mmol/l, respectively). These results in severely head injured patients confirm previous in vitro and animal studies in which relationships between potassium, glutamate, lactate and CBF were found. Potassium efflux is a major determinant of cell swelling leading to clinically significant cytotoxic edema due to increased glutamate release during reduced cerebral blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the number of ischemia reperfusion (I/R) injuries on the rise, and a lack of pharmacological intervention aimed at reducing free radical damage associated with I/R, we have developed 30 indole phenolic antioxidants that were synthesized by click chemistry to couple our indole with a phenolic or anisole derivative. The total antioxidant activity of the analogues was tested in vitro using the ferric thiocyanate lipid emulsion method. Compounds containing hydroxyl or methoxy aromatics at the 3 or 4 position on the aromatic coupled to the indole exhibited increased antioxidant scavenging. 4-methoxyindole derivatives (8a-e) exhibited increased scavenging (p < 0.05) compared to the known antioxidant butylated hydroxyanisole (BHA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This study investigated the role of a negative FAST in the diagnostic and therapeutic algorithm of multiply injured patients with liver or splenic lesions. METHODS: A retrospective analysis of 226 multiply injured patients with liver or splenic lesions treated at Bern University Hospital, Switzerland. RESULTS: FAST failed to detect free fluid or organ lesions in 45 of 226 patients with spleen or liver injuries (sensitivity 80.1%). Overall specificity was 99.5%. The positive and negative predictive values were 99.4% and 83.3%. The overall likelihood ratios for a positive and negative FAST were 160.2 and 0.2. Grade III-V organ lesions were detected more frequently than grade I and II lesions. Without the additional diagnostic accuracy of a CT scan, the mean ISS of the FAST-false-negative patients would be significantly underestimated and 7 previously unsuspected intra-abdominal injuries would have been missed. CONCLUSION: FAST is an expedient tool for the primary assessment of polytraumatized patients to rule out high grade intra-abdominal injuries. However, the low overall diagnostic sensitivity of FAST may lead to underestimated injury patterns and delayed complications may occur. Hence, in hemodynamically stable patients with abdominal trauma, an early CT scan should be considered and one must be aware of the potential shortcomings of a "negative FAST".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various supportive and adjunctive therapies to conventional mechanical ventilation have been evaluated in patients with acute lung injury and acute respiratory distress syndrome (e.g. nitric oxide, prone position, surfactant, glucocorticoids). Although some investigations have shown promising improvements in oxygenation and physiological variables, large randomized trials of adjunctive and supportive therapies showed no impact on survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute diffuse damage to the pulmonary parenchyma by a variety of local or systemic insults. Increased alveolar capillary membrane permeability was recognized as the common end organ injury and a central feature in all forms of ALI/ARDS. Although great strides have been made in understanding the pathogenesis of ALI/ARDS and in intensive care medicine, the treatment approach to ARDS is still relying on ventilatory and cardiovascular support based on the recognition of the clinical picture. In the course of evaluating novel treatment approaches to ARDS, 3 models of ALI induced in different species, i.e. the surfactant washout lavage model, the oleic acid intravenous injection model and the endotoxin injection model, were widely used. This review gives an overview of the pathological characteristics of these models from studies in pigs, dogs or sheep. We believe that a good morphological description of these models, both spatially and temporally, will help us gain a better understanding of the real pathophysiological picture and apply these models more accurately and liberally in evaluating novel treatment approaches to ARDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Inhaled nitric oxide (INO) allows selective pulmonary vasodilation in acute respiratory distress syndrome and improves PaO2 by redistribution of pulmonary blood flow towards better ventilated parenchyma. One-third of patients are nonresponders to INO, however, and it is difficult to predict who will respond. The aim of the present study was to identify, within a panel of inflammatory mediators released during endotoxin-induced lung injury, specific mediators that are associated with a PaO2 response to INO. METHODS: After animal ethics committee approval, pigs were anesthetized and exposed to 2 hours of endotoxin infusion. Levels of cytokines, prostanoid, leucotriene and endothelin-1 (ET-1) were sampled prior to endotoxin exposure and hourly thereafter. All animals were exposed to 40 ppm INO: 28 animals were exposed at either 4 hours or 6 hours and a subgroup of nine animals was exposed both at 4 hours and 6 hours after onset of endotoxin infusion. RESULTS: Based on the response to INO, the animals were retrospectively placed into a responder group (increase in PaO2 > or = 20%) or a nonresponder group. All mediators increased with endotoxin infusion although no significant differences were seen between responders and nonresponders. There was a mean difference in ET-1, however, with lower levels in the nonresponder group than in the responder group, 0.1 pg/ml versus 3.0 pg/ml. Moreover, five animals in the group exposed twice to INO switched from responder to nonresponder and had decreased ET-1 levels (3.0 (2.5 to 7.5) pg/ml versus 0.1 (0.1 to 2.1) pg/ml, P < 0.05). The pulmonary artery pressure and ET-1 level were higher in future responders to INO. CONCLUSIONS: ET-1 may therefore be involved in mediating the response to INO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. METHODS: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4 degrees C and 50 min of reperfusion at 37 degrees C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. RESULTS: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 microm3(0.10)) and CE+S (481 microm3(0.10)) compared with controls (323 microm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05). CONCLUSION: Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: We aimed to study the incidence and outcome of severe traumatic brain injury (TBI) in Switzerland and to test the feasibility of a large cohort study with case identification in the first 24 hours and 6-month follow-up. METHODS: From January to June 2005, we consecutively enrolled and followed up all persons with severe TBI (Abbreviated Injury Score of the head region >3 and Glasgow Coma Scale <9) in the catchment areas of 3 Swiss medical centres with neurosurgical facilities. The primary outcome was the Extended Glasgow Outcome Scale (GOSE) after 6 months. Secondary outcomes included survival, Functional Independence Mea - sure (FIM), and health-related quality of life (SF-12) at defined time-points up to 6 months after injury. RESULTS: We recruited 101 participants from a source population of about 2.47 million (ie, about 33% of Swiss population). The incidence of severe TBI was 8.2 per 100,000 person-years. The overall case fatality was 70%: 41 of 101 persons (41%) died at the scene of the accident. 23 of 60 hospitalised participants (38%) died within 48 hours, and 31 (53%) within 6 months. In all hospitalised patients, the median GOSE was 1 (range 1-8) after 6 months, and was 6 (2-8) in 6-month survivors. The median total FIM score was 125 (range 18-126); median-SF-12 component mea - sures were 44 (25-55) for the physical scale and 52 (32-65) for the mental scale. CONCLUSIONS: Severe TBI was associated with high case fatality and considerable morbidity in survivors. We demonstrated the feasibility of a multicentre cohort study in Switzerland with the aim of identifying modifiable determinants of outcome and improving current trauma care.