883 resultados para spatiotemporal epidemic prediction model
Resumo:
Parkinson's disease (PD) is a neuro-degenerative disorder, the second most common after Alzheimer's disease. After diagnosis, treatments can help to relieve the symptoms, but there is no known cure for PD. PD is characterized by a combination of motor and no-motor dysfunctions. Among the motor symptoms there is the so called Freezing of Gait (FoG). The FoG is a phenomenon in PD patients in which the feet stock to the floor and is difficult for the patient to initiate movement. FoG is a severe problem, since it is associated with falls, anxiety, loss of mobility, accidents, mortality and it has substantial clinical and social consequences decreasing the quality of life in PD patients. Medicine can be very successful in controlling movements disorders and dealing with some of the PD symptoms. However, the relationship between medication and the development of FoG remains unclear. Several studies have demonstrated that visual or auditory rhythmical cuing allows PD patients to improve their motor abilities. Rhythmic auditory stimulation (RAS) was shown to be particularly effective at improving gait, specially with patients that manifest FoG. While RAS allows to reduce the time and the effects of FoGs occurrence in PD patients after the FoG is detected, it can not avoid the episode due to the latency of detection. An improvement of the system would be the prediction of the FoG. This thesis was developed following two main objectives: (1) the finding of specifics properties during pre FoG periods different from normal walking context and other walking events like turns and stops using the information provided by the inertial measurements units (IMUs) and (2) the formulation of a model for automatically detect the pre FoG patterns in order to completely avoid the upcoming freezing event in PD patients. The first part focuses on the analysis of different methods for feature extraction which might lead in the FoG occurrence.
Resumo:
Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
A mathematical model for long-term, three-dimensional shoreline evolution is developed. The combined effects of variations of sea level; wave refraction and diffraction; loss of sand by density currents during storms, by rip currents, and by wind; bluff erosion and berm accretion; effects of manmade structures such as long groin or navigational structures; and beach nourishment are all taken into account. A computer program is developed with various subroutines which permit modification as the state-of-the-art progresses. The program is applied to a test case at Holland Harbor, Michigan. (Author).
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Patient outcomes in transplantation would improve if dosing of immunosuppressive agents was individualized. The aim of this study is to develop a population pharmacokinetic model of tacrolimus in adult liver transplant recipients and test this model in individualizing therapy. Population analysis was performed on data from 68 patients. Estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F) using the nonlinear mixed effects model program (NONMEM). Factors screened for influence on these parameters were weight, age, sex, transplant type, biliary reconstructive procedure, postoperative day, days of therapy, liver function test results, creatinine clearance, hematocrit, corticosteroid dose, and interacting drugs. The predictive performance of the developed model was evaluated through Bayesian forecasting in an independent cohort of 36 patients. No linear correlation existed between tacrolimus dosage and trough concentration (r(2) = 0.005). Mean individual Bayesian estimates for CL/F and V/F were 26.5 8.2 (SD) L/hr and 399 +/- 185 L, respectively. CL/F was greater in patients with normal liver function. V/F increased with patient weight. CL/F decreased with increasing hematocrit. Based on the derived model, a 70-kg patient with an aspartate aminotransferase (AST) level less than 70 U/L would require a tacrolimus dose of 4.7 mg twice daily to achieve a steady-state trough concentration of 10 ng/mL. A 50-kg patient with an AST level greater than 70 U/L would require a dose of 2.6 mg. Marked interindividual variability (43% to 93%) and residual random error (3.3 ng/mL) were observed. Predictions made using the final model were reasonably nonbiased (0.56 ng/mL), but imprecise (4.8 ng/mL). Pharmacokinetic information obtained will assist in tacrolimus dosing; however, further investigation into reasons for the pharmacokinetic variability of tacrolimus is required.
Resumo:
The development of new experimental techniques for the determination of phase equilibria in complex slag systems, chemical thermodynamic, and viscosity models is reported. The new experimental data, and new thermodynamic and viscosity models, have been combined in a custom-designed computer software package to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physicochemical properties in complex slag systems. The approach is illustrated with calculations on the system FeO-Fe2O3-CaO-SiO-Al2O3 at metallic iron saturation, slags produced in coal slagging gasifiers, and in the reprocessing of nonferrous smelting slags. This article was presented at the Mills Symposium Molten Metals, Slags and Glasses-Characterisation of Properties and Phenomena held in London in August 2000.
Resumo:
We consider the problem of assessing the number of clusters in a limited number of tissue samples containing gene expressions for possibly several thousands of genes. It is proposed to use a normal mixture model-based approach to the clustering of the tissue samples. One advantage of this approach is that the question on the number of clusters in the data can be formulated in terms of a test on the smallest number of components in the mixture model compatible with the data. This test can be carried out on the basis of the likelihood ratio test statistic, using resampling to assess its null distribution. The effectiveness of this approach is demonstrated on simulated data and on some microarray datasets, as considered previously in the bioinformatics literature. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This paper summarises test results that were used to validate a model and scale-up procedure of the high pressure grinding roll (HPGR) which was developed at the JKMRC by Morrell et al. [Morrell, Lim, Tondo, David,1996. Modelling the high pressure grinding rolls. In: Mining Technology Conference, pp. 169-176.]. Verification of the model is based on results from four data sets that describe the performance of three industrial scale units fitted with both studded and smooth roll surfaces. The industrial units are currently in operation within the diamond mining industry and are represented by De Beers, BHP Billiton and Rio Tinto. Ore samples from the De Beers and BHP Billiton operations were sent to the JKMRC for ore characterisation and HPGR laboratory-scale tests. Rio Tinto contributed an historical data set of tests completed during a previous research project. The results conclude that the modelling of the HPGR process has matured to a point where the model may be used to evaluate new and to optimise existing comminution circuits. The model prediction of product size distribution is good and has been found to be strongly dependent of the characteristics of the material being tested. The prediction of throughput and corresponding power draw (based on throughput) is sensitive to inconsistent gap/diameter ratios observed between laboratory-scale tests and full-scale operations. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated analytically and numerically using mathematical models. A simplified feedback model for wear-type rail corrugation that includes a wheel pass time delay is developed with an aim to analytically distil the most critical interaction occurring between the wheel/rail structural dynamics, rolling contact mechanics and rail wear. To this end, a stability analysis on the complete system is performed to determine the growth of wear-type rail corrugations over multiple wheelset passages. This analysis indicates that although the dynamical behaviour of the system is stable for each wheel passage, over multiple wheelset passages, the growth of wear-type corrugations is shown to be the result of instability due to feedback interaction between the three primary components of the model. The corrugations are shown analytically to grow for all realistic railway parameters. From this analysis an analytical expression for the exponential growth rate of corrugations in terms of known parameters is developed. This convenient expression is used to perform a sensitivity analysis to identify critical parameters that most affect corrugation growth. The analytical predictions are shown to compare well with results from a benchmarked time-domain finite element model. (C) 2004 Elsevier B.V. All rights reserved.