999 resultados para spatial
Resumo:
In this paper we discuss a new type of query in Spatial Databases, called Trip Planning Query (TPQ). Given a set of points P in space, where each point belongs to a category, and given two points s and e, TPQ asks for the best trip that starts at s, passes through exactly one point from each category, and ends at e. An example of a TPQ is when a user wants to visit a set of different places and at the same time minimize the total travelling cost, e.g. what is the shortest travelling plan for me to visit an automobile shop, a CVS pharmacy outlet, and a Best Buy shop along my trip from A to B? The trip planning query is an extension of the well-known TSP problem and therefore is NP-hard. The difficulty of this query lies in the existence of multiple choices for each category. In this paper, we first study fast approximation algorithms for the trip planning query in a metric space, assuming that the data set fits in main memory, and give the theory analysis of their approximation bounds. Then, the trip planning query is examined for data sets that do not fit in main memory and must be stored on disk. For the disk-resident data, we consider two cases. In one case, we assume that the points are located in Euclidean space and indexed with an Rtree. In the other case, we consider the problem of points that lie on the edges of a spatial network (e.g. road network) and the distance between two points is defined using the shortest distance over the network. Finally, we give an experimental evaluation of the proposed algorithms using synthetic data sets generated on real road networks.
Resumo:
A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.
Resumo:
Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)
Resumo:
How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.
Resumo:
Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100)
Resumo:
The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.
Resumo:
Visual search data are given a unified quantitative explanation by a model of how spatial maps in the parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional resources as they reciprocally interact with visual representations in the prestriate cortex. The model visual representations arc organized into multiple boundary and surface representations. Visual search in the model is initiated by organizing multiple items that lie within a given boundary or surface representation into a candidate search grouping. These items arc compared with object recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches and recursive selection of new groupings until a target object io identified. This search model is algorithmically specified to quantitatively simulate search data using a single set of parameters, as well as to qualitatively explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Viri, and Garbart (1984), Cohen and Ivry (1991), Enno and Rensink (1990), He and Nakayarna (1992), Humphreys, Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the Feature Integration and Guided Search models, and grounds the analysis of visual search in neural models of preattentive vision, attentive object learning and categorization, and attentive spatial localization and orientation.
Resumo:
The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.
Resumo:
It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.
Resumo:
The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory.
Resumo:
Our eyes are constantly in motion. Even during visual fixation, small eye movements continually jitter the location of gaze. It is known that visual percepts tend to fade when retinal image motion is eliminated in the laboratory. However, it has long been debated whether, during natural viewing, fixational eye movements have functions in addition to preventing the visual scene from fading. In this study, we analysed the influence in humans of fixational eye movements on the discrimination of gratings masked by noise that has a power spectrum similar to that of natural images. Using a new method of retinal image stabilization18, we selectively eliminated the motion of the retinal image that normally occurs during the intersaccadic intervals of visual fixation. Here we show that fixational eye movements improve discrimination of high spatial frequency stimuli, but not of low spatial frequency stimuli. This improvement originates from the temporal modulations introduced by fixational eye movements in the visual input to the retina, which emphasize the high spatial frequency harmonics of the stimulus. In a natural visual world dominated by low spatial frequencies, fixational eye movements appear to constitute an effective sampling strategy by which the visual system enhances the processing of spatial detail.
Resumo:
This article introduces a quantitative model of early visual system function. The model is formulated to unify analyses of spatial and temporal information processing by the nervous system. Functional constraints of the model suggest mechanisms analogous to photoreceptors, bipolar cells, and retinal ganglion cells, which can be formally represented with first order differential equations. Preliminary numerical simulations and analytical results show that the same formal mechanisms can explain the behavior of both X (linear) and Y (nonlinear) retinal ganglion cell classes by simple changes in the relative width of the receptive field (RF) center and surround mechanisms. Specifically, an increase in the width of the RF center results in a change from X-like to Y-like response, in agreement with anatomical data on the relationship between α- and
Resumo:
In this thesis we relate the formal description of various cold atomic systems in the energy eigenbasis, to the observable spatial mode dynamics. Herein the `spatial mode dynamics' refers to the direction of photon emission following the spontaneous emission of an excited fermion in the presence of a same species and spin ideal anisotropic Fermi sea in its internal ground state. Due to the Pauli principle, the presence of the ground state Fermi sea renders the phase space, anisotropic and only partially accessible, thereby a ecting the direction of photon emission following spontaneous emission. The spatial and energetic mode dynamics also refers to the quantum `tunneling' interaction between localised spatial modes, synonymous with double well type potentials. Here we relate the dynamics of the wavefunction in both the energetic and spatial representations. Using this approach we approximate the relationship between the spatial and energetic representations of a wavefunction spanning three spatial and energetic modes. This is extended to a process known as Spatial Adiabatic Passage, which is a technique to transport matter waves between localised spatial modes. This approach allows us to interpret the transport of matter waves as a signature of a geometric phase acquired by the one of the internal energy eigenstates of the system during the cyclical evolution. We further show that this geometric phase may be used to create spatial mode qubit and qutrit states.
Resumo:
Distribution of soft sediment benthic fauna and the environmental factors affecting them were studied, to investigate changes across spatial and temporal scales. Investigations took place at Lough Hyne Marine Reserve using a range of methods. Data on the sedimentation rates of organic and inorganic matter were collected at monthly intervals for one year at a number of sites around the Lough, by use of vertical midwater-column sediment traps. Sedimentation of these two fractions were not coupled; inorganic matter sedimentation depended on hydrodynamic and weather factors, while the organic matter sedimentation was more complex, being dependent on biological and chemical processes in the water column. The effects of regular hypoxic episodes on benthic fauna due to a natural seasonal thermocline were studied in the deep Western Trough, using camera-equipped remotely-operated vehicle to follow transects, on a three-monthly basis over one year. In late summer, the area below the thermocline of the Western Trough was devoid of visible fauna. Decapod crustaceans were the first taxon to make use of ameliorating oxygen conditions in autumn, by darting below the thermocline depth, most likely to scavenge. This was indicated by tracks that they left on the surface of the Trough floor. Some species, most noticeably Fries’ goby Lesueurigobius friesii, migrated below the thermocline depth when conditions were normoxic and established semi-permanent burrows. Their population encompassed all size classes, indicating that this habitat was not limited to juveniles of this territorial species. Recolonisation by macrofauna and burrowing megafauna was studied during normoxic conditions, from November 2009 to May 2010. Macrofauna displayed a typical post-disturbance pattern of recolonisation with one species, the polychaete Scalibregma inflatum, occurring at high abundance levels in March 2010. In May, this population had become significantly reduced and a more diverse community was established. The abundance of burrowing infauna comprising decapods crabs and Fries’ gobies, was estimated by identifying and counting their distinctive burrow structures. While above the summer thermocline depth, burrow abundance increased in a linear fashion, below the thermocline depth a slight reduction of burrow abundance occurred in May, when oxygen conditions deteriorated again. The majority of the burrows occurring in May were made by Fries’ gobies, which are thought to encounter low oxygen concentrations in their burrows. Reduction in burrow abundance of burrowing shrimps Calocaris macandreae and Callianassa subterranea (based on descriptions of burrow structures from the literature), from March to May, might be related to their reduced activity in hypoxia, leading to loss of structural burrow maintenance. Spatial and temporal changes to macrofaunal assemblage structures were studied seasonally for one year across 5 sites in the Lough and subject to multivariate statistical analysis. Assemblage structures were significantly correlated with organic matter levels in the sediment, the amounts of organic matter settling out of the water column one month before macrofaunal sampling took place as well as current speed and temperature. This study was the first to investigate patterns and processes in the Lough soft sediment ecology across all 3 basins on a temporal and spatial scale. An investigation into the oceanographic aspects of the development, behaviour and break-down of the summer thermocline of Lough Hyne was performed in collaboration with researchers from other Irish institutions.
Resumo:
This study examined the spatial and temporal variability of dung beetle assemblages across a variety of scales e.g. from the between-pad scale (examining the effects of dung size and type) to larger spatial scales encompassing southern Ireland. Dung beetle assemblage structure as sampled by dung pad cohort samples and dung baited pitfall trapping were compared. Generally, the rank order of abundance of dung beetle species was significantly correlated between pitfall catches and cohort pad samples. Across different dung sizes, in both pitfall catches and cohort pad samples, the relative abundance of species was frequently significantly different, but the rank order of abundance of dung beetle was usually significantly correlated. Considerable variations in pitfall catches at temporal scales of a few days appeared to be closely related to weather conditions and rotational grazing. However, despite considerable variation in absolute abundances between consecutive days of sampling, assemblage structure typically remained very similar. The relationship between dung pad size and dung beetle colonisation was investigated. In field experiments in which pads of different sizes (0.25 L, 0.5 L, 1.0 L and 1.5 L) were artificially deposited, there was a positive relationship between pad size and both biomass and number of beetles colonising dung pads and pitfall traps. In addition, with one exception, the field experiments indicated a general positive relationship between dung pad size and biomass density (dung beetle biomass per unit dung volume). A laboratory experiment indicated that pat residence times of A. rufipes were significantly correlated with dung pad size. Investigation of naturally-deposited cow dung pads in the field also indicated that both larval numbers and densities were significantly correlated with dung pad size. These results were discussed in the context of theory related to aggregation and coexistence of species, and resource utilisation by organisms in ephemeral, patchy resources. The colonisation by dung beetles of dung types from native herbivores (sheep, horse and cow) was investigated in field experiments. There were significant differences between the dung types in the chemical parameters measured, and there were significant differences in abundances of dung beetles colonising the dung types. Sheep dung was typically the preferred dung type. Data from these field experiments, and from published literature, indicated that dung beetle species can display dung type preferences, in terms of comparisons of both absolute and relative abundances. In addition, data from laboratory experiments indicate that both Aphodius larval production and pat residence times tended to be higher in those dung types which were preferred by adult Aphodius in the colonisation experiments. Data from dung-baited pitfall trapping (from this and another study) at several sites (up to 180 km distant) and over a number of years (between 1991 and 1996) were used to investigate spatial and temporal variation in dung beetle assemblage structure and composition (Aphodius, Sphaeridium and Geotrupes) across a range of scales in southern Ireland. Species richness levels, species composition and rank order of abundances were very similar between the assemblages. The temporal variability between seasons within any year exceeded temporal variability between years. DCA ordinations indicated that there was a similar level of variability between assemblage structure from the between-field (~1km) to regional (~180 km) spatial scales, and between year (6 years) temporal scales. At the biogeographical spatial scale, analysis of data from the literature indicated that there was considerable variability at this scale, largely due to species turnover.