877 resultados para sparse matrices
Resumo:
Developing economies accommodate more than three quarters of the world's population. This means understanding their growth and well-being is of critical importance. Information technology (IT) is one resource that has had a profound effect in shaping the global economy. IT is also an important resource for driving growth and development in developing economies. Investments in developing economies, however, have focused on the exploitation of labor and natural resources. Unlike in developed economies, focus on IT investment to improve efficiency and effectiveness of business process in developing economies has been sparse, and mechanisms for deriving better IT-related business value is not well understood. This study develops a complementarities-based business value model for developing economies, and tests the relationship between IT investments, IT-related complementarities, and business process performance. It also considers the relationship between business processes performance and firm-level performance. The results suggest that a coordinated investment in IT and IT-related complementarities related favorably to business process performance. Improvements in process-level performance lead to improvements in firm-level performance. The results also suggest that the IT-related complementarities are not only a source of business value on their own, but also enhance the IT resources' ability to contribute to business process performance. This study demonstrates that a coordinated investment approach is required in developing economies. With this approach, their IT resources and IT-related complementaries would help them significantly in improving their business processes, and eventually their firm-level performances.
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
In this wall-mounted sculpture, a car stereo is mounted into a photographic image of a redwood forest. It plays a sparse and evocative guitar soundtrack. The supporting cabinet is finished with timber veneer to resemble a retro home stereo or piece of designer furniture. This work examines how we construct, represent and deploy notions of nature in our contemporary lives. It mixes the languages of furniture design, landscape photography and sculpture. Drawing on Zygmunt Bauman’s theoretical work on “liquid modernity”, this work questions how and where we find space for contemplation and reflection in a contemporary context increasingly defined by temporary social bonds and consumer choices.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
SET on a sparse stage with a ladder, a table, a few chairs and a backdrop of plastic sheeting, Hamlet Apocalypse retails the core of Shakespeare's story in combination with the actor's relation to the concept of the end of everything.
Resumo:
A standard method for the numerical solution of partial differential equations (PDEs) is the method of lines. In this approach the PDE is discretised in space using �finite di�fferences or similar techniques, and the resulting semidiscrete problem in time is integrated using an initial value problem solver. A significant challenge when applying the method of lines to fractional PDEs is that the non-local nature of the fractional derivatives results in a discretised system where each equation involves contributions from many (possibly every) spatial node(s). This has important consequences for the effi�ciency of the numerical solver. First, since the cost of evaluating the discrete equations is high, it is essential to minimise the number of evaluations required to advance the solution in time. Second, since the Jacobian matrix of the system is dense (partially or fully), methods that avoid the need to form and factorise this matrix are preferred. In this paper, we consider a nonlinear two-sided space-fractional di�ffusion equation in one spatial dimension. A key contribution of this paper is to demonstrate how an eff�ective preconditioner is crucial for improving the effi�ciency of the method of lines for solving this equation. In particular, we show how to construct suitable banded approximations to the system Jacobian for preconditioning purposes that permit high orders and large stepsizes to be used in the temporal integration, without requiring dense matrices to be formed. The results of numerical experiments are presented that demonstrate the effectiveness of this approach.
Resumo:
An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.
Resumo:
Traversability maps are a global spatial representation of the relative difficulty in driving through a local region. These maps support simple optimisation of robot paths and have been very popular in path planning techniques. Despite the popularity of these maps, the methods for generating global traversability maps have been limited to using a-priori information. This paper explores the construction of large scale traversability maps for a vehicle performing a repeated activity in a bounded working environment, such as a repeated delivery task.We evaluate the use of vehicle power consumption, longitudinal slip, lateral slip and vehicle orientation to classify the traversability and incorporate this into a map generated from sparse information.
Resumo:
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.
Resumo:
In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.
Resumo:
BACKGROUND: The plasminogen activator system has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling, including wound healing. The aim of this study was to elucidate the presence of components of the plasminogen activator system during different stages of periodontal wound healing. METHODS: Periodontal wounds were created around the molars of adult rats and healing was followed for 28 days. Immunohistochemical analyses of the healing tissues and an analysis of the periodontal wound healing fluid by ELISA were carried out for the detection of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and 2 plasminogen activator inhibitors (PAI-1 and PAI-2). RESULTS: During the early stages (days 1 to 3) of periodontal wound healing, PAI-1 and PAI-2 were found to be closely associated with the deposition of a fibrin clot in the gingival sulcus. These components were strongly associated with the infiltrating inflammatory cells around the fibrin clot. During days 3 to 7, u-PA, PAI-1, and PAI-2 were associated with cells (particularly monocytes/macrophages, fibroblasts, and endothelial cells) in the newly formed granulation tissue. During days 7 to 14, a new attachment apparatus was formed during which PAI-1, PAI-2, and u-PA were localized in both periodontal ligament fibroblasts (PDL) and epithelial cells at sites where these cells were attaching to the root surface. In the periodontal wound healing fluid, the concentration for t-PA increased and peaked during the first week. PAI-2 had a similar expression to t-PA, but at a lower level over the entire wound-healing period. CONCLUSIONS: These findings indicate that the plasminogen activator system is involved in the entire process of periodontal wound healing, in particular with the formation of fibrin matrix on the root surface and its replacement by granulation tissue, as well as the subsequent formation of the attachment of soft tissue to the root surface during the later stages of wound repair.
Resumo:
Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.
Resumo:
The performance of techniques for evaluating multivariate volatility forecasts are not yet as well understood as their univariate counterparts. This paper aims to evaluate the efficacy of a range of traditional statistical-based methods for multivariate forecast evaluation together with methods based on underlying considerations of economic theory. It is found that a statistical-based method based on likelihood theory and an economic loss function based on portfolio variance are the most effective means of identifying optimal forecasts of conditional covariance matrices.