821 resultados para sisal fibre


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a point by point method for the inscription of fibre Bragg gratings using a tightly focused infrared femtosecond laser is implemented for the first time. Fibre Bragg gratings are wavelength-selective, retro-reflectors which have become a key component in optical communications as well as offering great potential as a sensing tool. Standard methods of fabrication are based on UV inscription in fibre with a photosensitive core. Despite the high quality of the gratings, a number of disadvantages are associated with UV inscription, in particular, the requirements of a photosensitive fibre, the low thermal stability and the need to remove the protective coating prior to inscription. By combining the great flexibility offered by the point by point method with the advantages inherent to inscription by an infrared femtosecond laser, the previous disadvantages are overcome. The method here introduced, allows a fast inscription process at a rate of ~1mm/s, gratings of lengths between 1cm and 2cm exhibiting reflections in excess of 99%. Physical dimensions of these gratings differ significantly from those inscribed by other methods, in this case the grating is confined to a fraction of the cross section of the core, leading to strong and controllable birefringence and polarisation dependent loss. Finally, an investigation of the potential for their exploitation towards novel applications is carried out, devices such as directional bend sensors inscribed in single-mode fibre, superimposed but non-overlapping gratings, and single-mode, single-polarisation fibre lasers, were designed, fabricated and characterised based on point by point femtosecond inscription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of sensing devices is one of the instrumentation fields that has grown rapidly in the last decade. Corresponding to the swift advance in the development of microelectronic sensors, optical fibre sensors are widely investigated because of their advantageous properties over the electronics sensors such as their wavelength multiplexing capability and high sensitivity to temperature, pressure, strain, vibration and acoustic emission. Moreover, optical fibre sensors are more attractive than the electronics sensors as they can perform distributed sensing, in terms of covering a reasonably large area using a single piece of fibre. Apart from being a responsive element in the sensing field, optical fibre possesses good assets in generating, distributing, processing and transmitting signals in the future broadband information network. These assets include wide bandwidth, high capacity and low loss that grant mobility and flexibility for wireless access systems. Among these core technologies, the fibre optic signal processing and transmission of optical and radio frequency signals have been the subjects of study in this thesis. Based on the intrinsic properties of single-mode optical fibre, this thesis aims to exploit the fibre characteristics such as thermal sensitivity, birefringence, dispersion and nonlinearity, in the applications of temperature sensing and radio-over-fibre systems. By exploiting the fibre thermal sensitivity, a fully distributed temperature sensing system consisting of an apodised chirped fibre Bragg grating has been implemented. The proposed system has proven to be efficient in characterising grating and providing the information of temperature variation, location and width of the heat source applied in the area under test.To exploit the fibre birefringence, a fibre delay line filter using a single high-birefringence optical fibre structure has been presented. The proposed filter can be reconfigured and programmed by adjusting the input azimuth of launched light, as well as the strength and direction of the applied coupling, to meet the requirements of signal processing for different purposes in microwave photonic and optical filtering applications. To exploit the fibre dispersion and nonlinearity, experimental investigations have been carried out to study their joint effect in high power double-sideband and single-sideband modulated links with the presence of fibre loss. The experimental results have been theoretically verified based on the in-house implementation of the split-step Fourier method applied to the generalised nonlinear Schrödinger equation. Further simulation study on the inter-modulation distortion in two-tone signal transmission has also been presented so as to show the effect of nonlinearity of one channel on the other. In addition to the experimental work, numerical simulations have also been carried out in all the proposed systems, to ensure that all the aspects concerned are comprehensively investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis address the creation of fibre Bragg grating based sensors and the fabrication systems which are used to manufacture them. The information is presented primarily with experimental evidence, backed up with the current theoretical concepts. The issues involved in fabricating high quality fibre Bragg gratings are systematically investigated. Sources of errors in the manufacturing processes are detected, analysed and reduced to allow higher quality gratings to be fabricated. The use of chirped Moiré gratings as distributed sensors is explored, the spatial resolution is increased beyond that of any previous work and the use of the gratings as distributed load sensors is also presented. Chirped fibre Bragg gratings are shown to be capable of operating as in-situ wear sensors, capable of accurately measuring the wear or erosion of the surface of a material. Two methods of measuring the wear are compared, giving a comparison between an expensive high resolution method and a cheap lower resolution method. The wear sensor is also shown to be capable of measuring the physical size and location of damage induced on the surface of a material. An array method is demonstrated to provide a high survivability such that the array may be damaged yet operate with minimal degradation in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the research work described in this thesis was to investigate the interrogation of fibre optic sensors using "off the shelf optical components and equipment developed mainly for the telecommunications industry. This provides a cost effective way of bringing fibre optic sensor systems to within the price range of their electro-mechanical counterparts. The research work focuses on the use of an arrayed waveguide grating, an acousto-optic tuneable filter and low-coherence interferometry to measure dynamic strain and displacement using fibre Bragg grating and interferometric sensors. Based on the intrinsic properties of arrayed waveguide gratings and acousto-optic tuneable filters used in conjunction with interferometry, fibre Bragg gratings and interferometric sensors a number of novel fibre optic sensor interrogation systems have been realised. Special single mode fibre, namely, high-birefringence fibre has been employed to implement a dual-beam interrogating interferometer. The first interrogation scheme is based on an optical channel monitor, which is an arrayed waveguide grating with integral photo-detectors providing a number of amplified electrical outputs. It is used to interrogate fibre Bragg grating and interferometric sensors. Using the properties of polarisation maintainability in high-birefringent fibre an interrogating interferometer was realised by winding a length of the fibre around a piezoelectric modulator generating a low-frequency carrier signal. The system was used to interrogate both fibre Bragg grating and interferometric sensors. Finally, the use of an acousto-optic tuneable filter is employed to interrogate fibre Bragg gratings. The device is used to generate a very high frequency carrier signal at the output of an optical interferometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines experimentally options for optical fibre transmission over oceanic distances. Its format follows the chronological evolution of ultra-long haul optical systems, commencing with opto-electronic regenerators as repeaters, progressing to optically amplified NRZ systems and finally solitonic propagation. In each case recirculating loop techniques are deployed to simplify the transmission experiments. Advances in high speed electronics have allowed regenerators operating at 10 Gbit/s to become a practical reality. By augmenting such devices with optical amplifiers it is possible to greatly enhance the repeater spacing. Work detailed in this thesis has culminated in the propagation of 10 Gbit/s data over 400,000 km with a repeater spacing of 160 km. System reliability and robustness are enhanced by the use of a directly modulated DFB laser transmitter and total insensitivity of the system to the signal state of polarisation. Optically amplified ultra-long haul NRZ systems have taken on particular importance with the impending deployment of TAT 12/13 and TPC 5. The performance of these systems is demonstrated to be primarily limited by analogue impairments such as the accumulation of amplifier noise, polarisation effects and optical non-linearities. These degradations may be reduced by the use of appropriate dispersion maps and by scrambling the transmitted state of signal polarisation. A novel high speed optically passive polarisation scrambler is detailed for the first time. At bit rates in excess of 10 Gbit/s it is shown that these systems are severely limited and do not offer the advantages that might be expected over regenerated links. Propagation using solitons as the data bits appears particularly attractive since the dispersive and non-linear effects of the fibre allow distortion free transmission. However, the generation of pure solitons is difficult but must be achieved if the uncontrolled transmission distance is to be maximised. This thesis presents a new technique for the stabilisation of an erbium fibre ring laser that has aUowed propagation of 2.5 Gbit/s solitons to the theoretical limit of ~ 18,000 km. At higher bit rates temporal jitter becomes a significant impairment and to aUow an increase in the aggregate line rate multiplexing in both time and polarisation domains has been proposed. These techniques are shown to be of only limited benefit in practical systems and ultimately some form of soliton transmission control is required. The thesis demonstrates synchronous retiming by amplitude modulation that has allowed 20 Gbit/s data to propagate 125,000 km error free with an amplifier spacing approaching the soliton period. Ultimately the speed of operation of such systems is limited by the electronics used and, thus, a new form of soliton control is demonstrated using all optical techniques to achieve synchronous phase modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consequences of fabricating Bragg gratings in various fibres, with or without hydrogen loading, and with varying laser power levels are explored. Three new techniques for fabricating chirped gratings are presented. Beams with dissimilar wavefront curvatures are interfered to give chirped gratings. With the same aim techniques of writing gratings on tapered fibres and on deformed fibres are also covered. With these techniques, a wide variety of gratings has been fabricated from the 'superbroad' (with bandwidths of up to 180 nm), small to medium bandwidth gratings with linear chirp profiles and quadratic chirped gratings. It is demonstrated that chirped grating can be concatenated to form all-fibre Fabry-Perot and Moiré resonators. These are further concatenated with chirped gratings to produce filters with narrow passbands and very broad stopbands. A number of other applications are also addressed. The use of chirped fibre gratings for dispersion compensation and femtosecond chirped pulse amplification is demonstrated. Chirped gratings are used as dispersive elements in modelocked fibre lasers producing ultrashort pulses. A chirped fibre grating Fabry-Perot transmission filter is used in a continuous wave laser that exhibits eleven simultaneously lasing wavelengths. Finally, the use of grating-coupler devices as variable reflectivity mirrors for laser optimisation and gain clamping is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the fabrication of fibre gratings in novel optical fibres for sensing applications. Long period gratings have been inscribed into photonic crystal fibre using the electric-arc technique. The resulting sensing characteristics were found to depend on the air-hole geometry of the particular fibre. This provides the potential of designing a fibre to have enhanced sensitivity to a particular measure and whilst removing unwanted cross sensitivities. Fibre Bragg gratings have been fabricated in a variety of polymer optical fibres, including microstructured polymer optical fibre, using a continuous wave helium cadmium laser. The thermal response of the gratings have been characterised and found to have enhanced sensitivity compared to fibre Bragg gratings in silica optical fibre. The increased sensitivity has been harnessed to achieve a grating based device in single mode step index polymer optical fibre by fabricating an electrically tunable fibre Bragg grating. This was accomplished by coating the grating region in a thin layer of copper, which upon application of a direct current, causes a temperature induced Bragg wavelength shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT This thesis describes a detailed study of advanced optical fibre sensors based on fibre Bragg grating (FBG), tilted fibre Bragg grating (TFBG) and long-period grating (LPG) and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below.The most important contribution from the research work presented in this thesis is the implementation of in-fibre grating based refractive index (RI) sensors, which could be the good candidates for optical biochemical sensing. Several fibre grating based RI sensors have been proposed and demonstrated by exploring novel grating structures and different fibre types, and employing efficient hydrofluoric acid etching technique to enhance the RI sensitivity. All the RI devices discussed in this thesis have been used to measure the concentration of sugar solution to simulate the chemical sensing. Efforts have also been made to overcome the RI-temperature cross-sensitivity for practical application. The demonstrated in-fibre grating based RI sensors could be further implemented as potential optical biosensors by applying bioactive coatings to realise high bio-sensitivity and bio-selectivity.Another major contribution of this thesis is the application of TFBGs. A prototype interrogation system by the use of TFBG with CCD-array was implemented to perform wavelength division multiplexing (WDM) interrogation around 800nm wavelength region with the advantages of compact size, fast detection speed and low-cost. As a high light, a novel in-fibre twist sensors utilising strong polarisation dependant coupling behaviour of an 81°-TFBG was presented to demonstrate the high torsion sensitivity and capability of direction recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boyd's SBS model which includes distributed thermal acoustic noise (DTAN) has been enhanced to enable the Stokes-spontaneous density depletion noise (SSDDN) component of the transmitted optical field to be simulated, probably for the first time, as well as the full transmitted field. SSDDN would not be generated from previous SBS models in which a Stokes seed replaces DTAN. SSDDN becomes the dominant form of transmitted SBS noise as model fibre length (MFL) is increased but its optical power spectrum remains independent of MFL. Simulations of the full transmitted field and SSDDN for different MFLs allow prediction of the optical power spectrum, or system performance parameters which depend on this, for typical communication link lengths which are too long for direct simulation. The SBS model has also been innovatively improved by allowing the Brillouin Shift Frequency (BS) to vary over the model fibre length, for the nonuniform fibre model (NFM) mode, or to remain constant, for the uniform fibre model (UFM) mode. The assumption of a Gaussian probability density function (pdf) for the BSF in the NFM has been confirmed by means of an analysis of reported Brillouin amplified power spectral measurements for the simple case of a nominally step-index single-mode pure silica core fibre. The BSF pdf could be modified to match the Brillouin gain spectra of other fibre types if required. For both models, simulated backscattered and output powers as functions of input power agree well with those from a reported experiment for fitting Brillouin gain coefficients close to theoretical. The NFM and UFM Brillouin gain spectra are then very similar from half to full maximum but diverge at lower values. Consequently, NFM and UFM transmitted SBS noise powers inferred for long MFLs differ by 1-2 dB over the input power range of 0.15 dBm. This difference could be significant for AM-VSB CATV links at some channel frequencies. The modelled characteristic of Carrier-to-Noise Ratio (CNR) as a function of input power for a single intensity modulated subcarrier is in good agreement with the characteristic reported for an experiment when either the UFM or NFM is used. The difference between the two modelled characteristics would have been more noticeable for a higher fibre length or a lower subcarrier frequency.