975 resultados para singular integral
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
In this paper we deal with discontinuous vector fields on R-2 and we prove that the analysis of their local behavior around a typical singularity can be treated via singular perturbation. The regularization process developed by Sotomayor and Teixeira is crucial for the development of this work. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac's method.
Resumo:
O objetivo do presente trabalho foi estudar os efeitos de diferentes tempos de processamento (duas, quatro e seis horas) e temperaturas (50°C, 65°C e 80°C) em dois substratos: farinha do grão integral de soja e farelo de soja. Para obtenção do resíduo, utilizou-se uma máquina de aço inoxidável com termostato para controle de temperatura e agitador constante. O delineamento estatístico utilizado na análise dos dados foi inteiramente casualizado, segundo o esquema fatorial 3 x 3 x 2 com duas repetições. Concluiu-se que os tratamentos não apresentaram diferenças marcantes na composição química e mineral do resíduo. O teor de proteína no resíduo do farelo foi 3,5% superior ao teor do farelo que lhe deu origem, o contrário ocorreu com o resíduo da farinha que foi 9,8% inferior. O teor de extrato etéreo no resíduo da farinha, aproximou-se bastante do teor da farinha do grão integral (21,41%) e no resíduo do farelo foi ligeiramente inferior.
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is shown that for singular potentials of the form lambda/r(alpha),the asymptotic form of the wave function both at r --> infinity and r --> 0 plays an important role. Using a wave function having the correct asymptotic behavior for the potential lambda/r(4), it is, shown that it gives the exact ground-state energy for this potential when lambda --> 0, as given earlier by Harrell [Ann. Phys. (NY) 105, 379 (1977)]. For other values of the coupling parameter X, a trial basis;set of wave functions which also satisfy the correct boundary conditions at r --> infinity and r --> 0 are used to find the ground-state energy of the singular potential lambda/r(4) It is shown that the obtained eigenvalues are in excellent agreement with their exact ones for a very large range of lambda values.
Resumo:
A decomposition of identity is given as a complex integral over the coherent states associated with a class of shape-invariant self-similar potentials. There is a remarkable connection between these coherent states and Ramanujan's integral extension of the beta function.
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
An experiment was conducted to determine the apparent nitrogen-corrected metabolizable energy (AMEn) values and the coefficients' metabolization of the: dry matter, ether extract, calcium and phosphorus availabilities of experimental layer diets containing toasted (TSB) and extruded (ESB) soybeans. The soybean meal (SBM) was substituted at 0, 50, and 100% by TSB and ESB whole soybeans. The whole soybeans utilization in layer diets did not adversely affect calcium and phosphorus availability. The SBM and ESB, in diets with crude protein at 17%, showed the best ether extract coefficients of metabolization. When TSB replaced all SBM in the diets, it was observed the worst value for AMEn.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)