951 resultados para single system image
Resumo:
How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.
Resumo:
This thesis addresses the problem of recognizing solid objects in the three-dimensional world, using two-dimensional shape information extracted from a single image. Objects can be partly occluded and can occur in cluttered scenes. A model based approach is taken, where stored models are matched to an image. The matching problem is separated into two stages, which employ different representations of objects. The first stage uses the smallest possible number of local features to find transformations from a model to an image. This minimizes the amount of search required in recognition. The second stage uses the entire edge contour of an object to verify each transformation. This reduces the chance of finding false matches.
Resumo:
C.M. Onyango, J.A. Marchant and R. Zwiggelaar, 'Modelling uncertainty in agricultural image analysis', Computers and Electronics in Agriculture 17 (3), 295-305 (1997)
Resumo:
Huelse, M, Barr, D R W, Dudek, P: Cellular Automata and non-static image processing for embodied robot systems on a massively parallel processor array. In: Adamatzky, A et al. (eds) AUTOMATA 2008, Theory and Applications of Cellular Automata. Luniver Press, 2008, pp. 504-510. Sponsorship: EPSRC
Resumo:
This paper presents a techno-economic assessment for a unique Isolated Hybrid Power System (IHPS) design for remote areas isolated from the grid which also has the capability of being operated as a smart μ-grid. The share of renewable energy sources in resource poor developing countries is low. In these countries an increase in the share of alternative energy (wind, water and sun) delivered with inexpensive operationally robust generation and delivery systems is seen to the way forward. In our design also incorporates a novel storage system to increase the effectiveness of the Isolated IHPSs previously reported in the literature. The configuration reported is a system consisting of, the wind and sun powered generation complemented with batteries, fuel cell unit and a diesel generator. The modelling design and simulations were based on Simulations conducted using MATLAB/SIMULINK, and HOMER Energy Planning and Design software tools. The design and simulation of a new storage approach incorporating Hydrogen Peroxide (H2O2) fuel cell (increasing the efficiency of the fuel cell from 35% to 65%) and a single board computer (Raspberry Pi) used for the energy management and control the system are the novel features of our design. The novel control strategy implemented also includes a synchronization capability that facilitates IHPS to IHPS or IHPS to Main-Grid connection. In the paper after briefly but comprehensively detailing the design and simulations we will present the results on which we conclude that smart independent systems that can utilize indigenous renewable energy with a capability of being able to synchronize with the grid or each other are the most optimal way of electrifying resource poor developing countries in a sustainable way with minimum impact on the environment and also achieve reductions in Green House Gases.
Resumo:
Acousto-optic (AO) sensing and imaging (AOI) is a dual-wave modality that combines ultrasound with diffusive light to measure and/or image the optical properties of optically diffusive media, including biological tissues such as breast and brain. The light passing through a focused ultrasound beam undergoes a phase modulation at the ultrasound frequency that is detected using an adaptive interferometer scheme employing a GaAs photorefractive crystal (PRC). The PRC-based AO system operating at 1064 nm is described, along with the underlying theory, validating experiments, characterization, and optimization of this sensing and imaging apparatus. The spatial resolution of AO sensing, which is determined by spatial dimensions of the ultrasound beam or pulse, can be sub-millimeter for megahertz-frequency sound waves.A modified approach for quantifying the optical properties of diffuse media with AO sensing employs the ratio of AO signals generated at two different ultrasound focal pressures. The resulting “pressure contrast signal” (PCS), once calibrated for a particular set of pressure pulses, yields a direct measure of the spatially averaged optical transport attenuation coefficient within the interaction volume between light and sound. This is a significant improvement over current AO sensing methods since it produces a quantitative measure of the optical properties of optically diffuse media without a priori knowledge of the background illumination. It can also be used to generate images based on spatial variations in both optical scattering and absorption. Finally, the AO sensing system is modified to monitor the irreversible optical changes associated with the tissue heating from high intensity focused ultrasound (HIFU) therapy, providing a powerful method for noninvasively sensing the onset and growth of thermal lesions in soft tissues. A single HIFU transducer is used to simultaneously generate tissue damage and pump the AO interaction. Experimental results performed in excised chicken breast demonstrate that AO sensing can identify the onset and growth of lesion formation in real time and, when used as feedback to guide exposure parameters, results in more predictable lesion formation.
Resumo:
Poster is based on the following paper: C. Kwan and M. Betke. Camera Canvas: Image editing software for people with disabilities. In Proceedings of the 14th International Conference on Human Computer Interaction (HCI International 2011), Orlando, Florida, July 2011.
Resumo:
A probabilistic, nonlinear supervised learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA employs a set of several forward mapping functions that are estimated automatically from training data. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). The SMA can model ambiguous, one-to-many mappings that may yield multiple valid output hypotheses. Once learned, the mapping functions generate a set of output hypotheses for a given input via a statistical inference procedure. The SMA inference procedure incorporates an inverse mapping or feedback function in evaluating the likelihood of each of the hypothesis. Possible feedback functions include computer graphics rendering routines that can generate images for given hypotheses. The SMA employs a variant of the Expectation-Maximization algorithm for simultaneous learning of the specialized domains along with the mapping functions, and approximate strategies for inference. The framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human’s body or hands, given silhouettes from a single image. The accuracy and stability of the SMA are also tested using synthetic images of human bodies and hands, where ground truth is known.
Resumo:
A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. To gather images expediently, the image collection subsystem utilizes a distributed fleet of WWW robots running on different computers. The image robots gather information about the images they find, computing the appropriate image decompositions and indices, and store this extracted information in vector form for searches based on image content. At search time, users can iteratively guide the search through the selection of relevant examples. Search performance is made efficient through the use of an approximate, optimized k-d tree algorithm. The system employs a novel relevance feedback algorithm that selects the distance metrics appropriate for a particular query.
Resumo:
Ongoing work towards appearance-based 3D hand pose estimation from a single image is presented. A large database of synthetic hand views is generated using a 3D hand model and computer graphics. The views display different hand shapes as seen from arbitrary viewpoints. Each synthetic view is automatically labeled with parameters describing its hand shape and viewing parameters. Given an input image, the system retrieves the most similar database views, and uses the shape and viewing parameters of those views as candidate estimates for the parameters of the input image. Preliminary results are presented, in which appearance-based similarity is defined in terms of the chamfer distance between edge images.
Resumo:
Camera Canvas is an image editing software package for users with severe disabilities that limit their mobility. It is specially designed for Camera Mouse, a camera-based mouse-substitute input system. Users can manipulate images through various head movements, tracked by Camera Mouse. The system is also fully usable with traditional mouse or touch-pad input. Designing the system, we studied the requirements and solutions for image editing and content creation using Camera Mouse. Experiments with 20 subjects, each testing Camera Canvas with Camera Mouse as the input mechanism, showed that users found the software easy to understand and operate. User feedback was taken into account to make the software more usable and the interface more intuitive. We suggest that the Camera Canvas software makes important progress in providing a new medium of utility and creativity in computing for users with severe disabilities.
Resumo:
snBench is a platform on which novice users compose and deploy distributed Sense and Respond programs for simultaneous execution on a shared, distributed infrastructure. It is a natural imperative that we have the ability to (1) verify the safety/correctness of newly submitted tasks and (2) derive the resource requirements for these tasks such that correct allocation may occur. To achieve these goals we have established a multi-dimensional sized type system for our functional-style Domain Specific Language (DSL) called Sensor Task Execution Plan (STEP). In such a type system data types are annotated with a vector of size attributes (e.g., upper and lower size bounds). Tracking multiple size aspects proves essential in a system in which Images are manipulated as a first class data type, as image manipulation functions may have specific minimum and/or maximum resolution restrictions on the input they can correctly process. Through static analysis of STEP instances we not only verify basic type safety and establish upper computational resource bounds (i.e., time and space), but we also derive and solve data and resource sizing constraints (e.g., Image resolution, camera capabilities) from the implicit constraints embedded in program instances. In fact, the static methods presented here have benefit beyond their application to Image data, and may be extended to other data types that require tracking multiple dimensions (e.g., image "quality", video frame-rate or aspect ratio, audio sampling rate). In this paper we present the syntax and semantics of our functional language, our type system that builds costs and resource/data constraints, and (through both formalism and specific details of our implementation) provide concrete examples of how the constraints and sizing information are used in practice.
Resumo:
Some WWW image engines allow the user to form a query in terms of text keywords. To build the image index, keywords are extracted heuristically from HTML documents containing each image, and/or from the image URL and file headers. Unfortunately, text-based image engines have merely retro-fitted standard SQL database query methods, and it is difficult to include images cues within such a framework. On the other hand, visual statistics (e.g., color histograms) are often insufficient for helping users find desired images in a vast WWW index. By truly unifying textual and visual statistics, one would expect to get better results than either used separately. In this paper, we propose an approach that allows the combination of visual statistics with textual statistics in the vector space representation commonly used in query by image content systems. Text statistics are captured in vector form using latent semantic indexing (LSI). The LSI index for an HTML document is then associated with each of the images contained therein. Visual statistics (e.g., color, orientedness) are also computed for each image. The LSI and visual statistic vectors are then combined into a single index vector that can be used for content-based search of the resulting image database. By using an integrated approach, we are able to take advantage of possible statistical couplings between the topic of the document (latent semantic content) and the contents of images (visual statistics). This allows improved performance in conducting content-based search. This approach has been implemented in a WWW image search engine prototype.
Resumo:
A combined 2D, 3D approach is presented that allows for robust tracking of moving bodies in a given environment as observed via a single, uncalibrated video camera. Tracking is robust even in the presence of occlusions. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that combines low-level (image processing) and mid-level (recursive trajectory estimation) information obtained during the tracking process. The resulting system can segment and maintain the tracking of moving objects before, during, and after occlusion. At each frame, the system also extracts a stabilized coordinate frame of the moving objects. This stabilized frame is used to resize and resample the moving blob so that it can be used as input to motion recognition modules. The approach enables robust tracking without constraining the system to know the shape of the objects being tracked beforehand; although, some assumptions are made about the characteristics of the shape of the objects, and how they evolve with time. Experiments in tracking moving people are described.