952 resultados para siliciclastic deposit
Resumo:
In this work polymer brushes on both flat and curved substrates were prepared by grafting from and grafting to techniques. The brushes on flat substrates were patterned on the µm-scale with the use of an inkjet printer. Thus it was demonstrated that chemistry with an inkjet printer is feasible. The inkjet printer was used to deposit microdroplets of acid. The saponification of surface-immobilized ATRP initiators containing an ester bond occurred in these microdroplets. The changes in the monolayer of ester molecules due to saponification were amplified by SI-ATRP. It was possible to correlate the polymer brush thickness to effectiveness of saponification. The use of an inkjet printer allowed for simultaneously screening of parameters such as type of acid, concentration of acid, and contact time between acid and surface. A dip-coater was utilized in order to test the saponification independent of droplet evaporation. The advantage of this developed process is its versatility. It can be applied to all surface-immobilized initiators containing ester bonds. The technique has additionally been used to selectively defunctionalize the initiator molecules covering a microcantilever on one side of a cantilever. An asymmetric coating of the cantilever with polymer brushes was thus generated. An asymmetric coating allows the use of a microcantilever for sensing applications. The preparation of nanocomposites comprised of polyorganosiloxane microgel particles functionalized with poly(ethyl methacrylate) (PEMA) brushes and linear, but entangled, PEMA chains is described in the second major part of this thesis. Measurement of the interparticle distance was performed using scanning probe microscopy and grazing incidence small angle X-ray scattering. The matrix molecular weight at which the nanocomposite showed microphase separation was related to abrupt changes in inter-particle distance. Microphase separation occurred once the matrix molecular exceeded the molecular weight of the brushes. The trigger for the microphase separation was a contraction of the polymer brushes, as the measurements of inter-particle distance have revealed. The brushes became impenetrable for the matrix chains upon contraction and thus behaved as hard spheres. The contraction led to a loss of anchoring between particles and matrix, as shown by nanowear tests using an atomic force microscope. Polyorganosiloxane microgel particles were functionalized with 13C enriched poly(ethyl methacrylate) brushes. New synthetic pathways were developed in order to enrich not the entire brush with 13C, but only exclusively selected regions. 13C chemical shift anisotropy, an advanced NMR technique, can thus be used in order to gather information about the extended conformations in the 13C enriched regions of the PEMA chains immobilized on the µ-gel-g-PEMA particles. The third part of this thesis deals with the grafting to of polymeric fullerene materials on silicon substrates. Active ester chemistry was employed in order to prepare the polymeric fullerene materials and graft these materials covalently on amino-functionalized silicon substrates.rn
Resumo:
CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.
Resumo:
El análisis económico de las instituciones jurídicas ha adquirido una importancia considerable en los últimos años. Precisamente, el objetivo esencial de este trabajo se centra en el estudio del análisis económico del contrato de depósito irregular de dinero mediante tres enfoques metodológicos diferentes. El primer capítulo de este trabajo analiza la naturaleza jurídica del contrato de depósito irregular de dinero, examinando las principales características respecto al contrato de préstamo o mutuo. Igualmente, este capítulo estudiará la lógica jurídica propia de ambas instituciones, y cómo los principios generales del derecho fueron descubiertos desde el derecho romano clásico. El segundo capítulo trata de analizar la historia de los hechos económicos y, en particular, el proceso histórico de la violación de los principios tradicionales del derecho en relación al contrato de depósito irregular de dinero. Por último, el capítulo tercero examina los distintos intentos doctrinales realizados para elaborar un nuevo tipo de contrato de depósito bancario de dinero, con el único objetivo de legitimar un sistema bancario con un coeficiente de caja de reserva fraccionaria.
Resumo:
In this thesis, elemental research towards the implantation of a diamond-based molecular quantum computer is presented. The approach followed requires linear alignment of endohedral fullerenes on the diamond C(100) surface in the vicinity of subsurface NV-centers. From this, four fundamental experimental challenges arise: 1) The well-controlled deposition of endohedral fullerenes on a diamond surface. 2) The creation of NV-centers in diamond close to the surface. 3) Preparation and characterization of atomically-flat diamondsurfaces. 4) Assembly of linear chains of endohedral fullerenes. First steps to overcome all these challenges were taken in the framework of this thesis. Therefore, a so-called “pulse injection” technique was implemented and tested in a UHV chamber that was custom-designed for this and further tasks. Pulse injection in principle allows for the deposition of molecules from solution onto a substrate and can therefore be used to deposit molecular species that are not stable to sublimation under UHV conditions, such as the endohedral fullerenes needed for a quantum register. Regarding the targeted creation of NV-centers, FIB experiments were carried out in cooperation with the group of Prof. Schmidt-Kaler (AG Quantum, Physics Department, Johannes Gutenberg-Universität Mainz). As an entry into this challenging task, argon cations were implanted into (111) surface-oriented CaF2 crystals. The resulting implantation spots on the surface were imaged and characterized using AFM. In this context, general relations between the impact of the ions on the surface and their valency or kinetic energy, respectively, could be established. The main part of this thesis, however, is constituted by NCAFM studies on both, bare and hydrogen-terminated diamond C(100) surfaces. In cooperation with the group of Prof. Dujardin (Molecular Nanoscience Group, ISMO, Université de Paris XI), clean and atomically-flat diamond surfaces were prepared by exposure of the substrate to a microwave hydrogen plasma. Subsequently, both surface modifications were imaged in high resolution with NC-AFM. In the process, both hydrogen atoms in the unit cell of the hydrogenated surface were resolved individually, which was not achieved in previous STM studies of this surface. The NC-AFM images also reveal, for the first time, atomic-resolution contrast on the clean, insulating diamond surface and provide real-space experimental evidence for a (2×1) surface reconstruction. With regard to the quantum computing concept, high-resolution NC-AFM imaging was also used to study the adsorption and self-assembly potential of two different kinds of fullerenes (C60 and C60F48) on aforementioned diamond surfaces. In case of the hydrogenated surface, particular attention was paid to the influence of charge transfer doping on the fullerene-substrate interaction and the morphology emerging from self-assembly. Finally, self-assembled C60 islands on the hydrogen-terminated diamond surface were subject to active manipulation by an NC-AFM tip. Two different kinds of tip-induced island growth modes have been induced and were presented. In conclusion, the results obtained provide fundamental informations mandatory for the realization of a molecular quantum computer. In the process it was shown that NC-AFM is, under proper circumstances, a very capable tool for imaging diamond surfaces with highest resolution, surpassing even what has been achieved with STM up to now. Particular attention was paid to the influence of transfer doping on the morphology of fullerenes on the hydrogenated diamond surface, revealing new possibilities for tailoring the self-assembly of molecules that have a high electron affinity.
Resumo:
Natural and anthropogenic emissions of gaseous and particulate matter affect the chemical composition of the atmosphere, impact visibility, air quality, clouds and climate. Concerning climate, a comprehensive characterization of the emergence, composition and transformation of aerosol particles is relevant as their influence on the radiation budget is still rarely understood. Regarding air quality and therefore human health, the formation of atmospheric aerosol particles is of particular importance as freshly formed, small particles penetrate into the human alveolar region and can deposit. Additionally, due to the long residence times of aerosol particles in the atmosphere it is crucial to examine their chemical and physical characteristics.This cumulative dissertation deals with stationary measurements of particles, trace gases and meteorological parameters during the DOMINO (Diel Oxidant Mechanism In relation to Nitrogen Oxide) campaign at the southwest coast of Spain in November/December 2008 and the ship emission campaign on the banks of the Elbe in Freiburg/Elbe in April 2011. Measurements were performed using the Mobile research Laboratory “MoLa” which is equipped with state-of-the-art aerosol particle and trace gas instruments as well as a meteorological station.
Resumo:
In 2011 the GSB/USB caving group of Bologna has discovered, in the southern fossil branches of Govjestica cave (Valle di Praça, Bosnia) a fossil deposit of vertebrates containing bones of Ursus spelaeus, Capra ibex, Cricetulus migratorius and Microtus. On the basis of the U/Th ages of the bones, teeth and carbonate flowstone covering the fossils (60 ka), datings carried out in the laboratories of U-Series at Bologna, and on the disposition of the bones, a past connection between Govjestica and the nearby Banja Stjena cave is hypothesised. The closure of this passage has occurred suddenly through a collapse that has forced the last cave bears awakened from their winter sleep to stay blocked in Govjestica, and die. The connecting passage has later been covered with calcite flowstones and is no longer visible. This hypothesis is sustained by the rather scarce number of skeletons of cave bears found in Govjestica (a dozen of skulls against the often large amounts of cave bears found in similar caves): Govjestica cave, and especially the Room of the Bones in its southern part, has been used by cave bears only for a couple of centuries before these parts became inaccessible. Furthermore, the entrance of Banja Stjena cave was probably located close to or at the level of the Praça river, that has excavated its thalweg for around 20 metres in the last 60 ka.
Resumo:
In order to fill existing knowledge gaps in the temporal and spatial distribution of soil erosion, its sources and causes, as well as in relation to its off-site impacts, erosion damage mapping of all visible erosion features was carried out at three study sites in Switzerland. The data illustrate that about one-quarter of the cultivated land was affected by water erosion. Observed mean annual soil loss rates are considered rather low (0.7–2.3 t/ha/y) compared to other European countries. However, substantial losses of >70 t/ha were recorded on individual plots. This paper focuses on the spatial aspects of soil erosion, by observing and comparing the study areas in a 1-year period from October 2005 to October 2006. The analyses illustrate that the sites differ considerably in average soil loss rates, but show similar patterns of off-site effects. In about one-third of the damaged plots an external source of surface runoff upslope contributed to the damage (run-on). Similarly, more than 50 per cent of the soil eroded on arable land deposited downslope on adjacent plots, roads, public/private infrastructure, etc., and 20 per cent of it reached open water bodies. Large amounts of eroded soil which deposit off-site, often related to slope depressions, are considered muddy floods and were frequently observed in Switzerland. Mapping, in conclusion, helps to sheds light on some of the important challenges of today, in particular: to comprehensively assess socioeconomic and ecological off-site effects of soil erosion, to attribute off-site impacts to on-site causes, and to raise awareness of all stakeholders involved, in order to improve ongoing discussions on policy formulation and implementation at the national and international levels.
Resumo:
Electronic waste generated from the consumption of durable goods in developed countries is often exported to underdeveloped countries for reuse, recycling and disposal with unfortunate environmental consequences. The lack of efficient disposal policies within developing nations coupled with global free trade agreements make it difficult for consumers to internalize these costs. This paper develops a two-country model, one economically developed and the other underdeveloped, to solve for optimal tax policies necessary to achieve the efficient allocation of economic resources in an economy with a durable good available for global reuse without policy measures in the underdeveloped country. A tax in the developed country on purchases of the new durable good combined with a waste tax set below the domestic external cost of disposal is sufficient for global efficiency. The implication of allowing free global trade in electronic waste is also examined, where optimal policy resembles a global deposit-refund system.
Resumo:
This thesis is about the 3rd bed of phosphate deposit at TAÏBA (Tobène). The study shows differences between prospecting and exploitation of the deposit from 2003 to 2009.
Resumo:
The purpose of this study was to investigate lymphatic clearance of the human skin in patients with acute deep thrombosis of the femoral vein. In 13 patients with deep vein thrombosis and no other cause for swelling of the limbs, lymphatic clearance of the skin at the foot was measured. Ten microliters of fluorescein isothiocyanatedextran 150,000 were injected intradermally and the fluorescent light intensity of the deposit measured 10 min and 24 hours after injection by window densitometry. In addition, intralymphatic pressure was measured by the servo-nulling system. The results were compared with a sex- and age-matched control group. Fluorescent light intensity decreased by 23.8 +/- 12.3 arbitrary units or by a factor of 1.8 +/- 0.5 in patients with DVT after 24 hours, which was significantly less than in healthy controls (33.7 +/- 8.9 arbitrary units or by factor 5.0 +/- 4.1, p < 0.013). Intralymphatic pressure was not different between the two groups. These results indicate that lymphatic clearance is significantly reduced in the acute phase of deep venous thrombosis.
Resumo:
The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.
Resumo:
The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.
Resumo:
Due to their high thermal efficiency, diesel engines have excellent fuel economy and have been widely used as a power source for many vehicles. Diesel engines emit less greenhouse gases (carbon dioxide) compared with gasoline engines. However, diesel engines emit large amounts of particulate matter (PM) which can imperil human health. The best way to reduce the particulate matter is by using the Diesel Particulate Filter (DPF) system which consists of a wall-flow monolith which can trap particulates, and the DPF can be periodically regenerated to remove the collected particulates. The estimation of the PM mass accumulated in the DPF and total pressure drop across the filter are very important in order to determine when to carry out the active regeneration for the DPF. In this project, by developing a filtration model and a pressure drop model, we can estimate the PM mass and the total pressure drop, then, these two models can be linked with a regeneration model which has been developed previously to predict when to regenerate the filter. There results of this project were: 1 Reproduce a filtration model and simulate the processes of filtration. By studying the deep bed filtration and cake filtration, stages and quantity of mass accumulated in the DPF can be estimated. It was found that the filtration efficiency increases faster during the deep-bed filtration than that during the cake filtration. A “unit collector” theory was used in our filtration model which can explain the mechanism of the filtration very well. 2 Perform a parametric study on the pressure drop model for changes in engine exhaust flow rate, deposit layer thickness, and inlet temperature. It was found that there are five primary variables impacting the pressure drop in the DPF which are temperature gradient along the channel, deposit layer thickness, deposit layer permeability, wall thickness, and wall permeability. 3 Link the filtration model and the pressure drop model with the regeneration model to determine the time to carry out the regeneration of the DPF. It was found that the regeneration should be initiated when the cake layer is at a certain thickness, since a cake layer with either too big or too small an amount of particulates will need more thermal energy to reach a higher regeneration efficiency. 4 Formulate diesel particulate trap regeneration strategies for real world driving conditions to find out the best desirable conditions for DPF regeneration. It was found that the regeneration should be initiated when the vehicle’s speed is high and during which there should not be any stops from the vehicle. Moreover, the regeneration duration is about 120 seconds and the inlet temperature for the regeneration is 710K.
Resumo:
The Collingwood Member is a mid to late Ordovician self-sourced reservoir deposited across the northern Michigan Basin and parts of Ontario, Canada. Although it had been previously studied in Canada, there has been relatively little data available from the Michigan subsurface. Recent commercial interest in the Collingwood has resulted in the drilling and production of several wells in the state of Michigan. An analysis of core samples, measured laboratory data, and petrophysical logs has yielded both a quantitative and qualitative understanding of the formation in the Michigan Basin. The Collingwood is a low permeability and low porosity carbonate package that is very high in organic content. It is composed primarily of a uniformly fine grained carbonate matrix with lesser amounts of kerogen, silica, and clays. The kerogen content of the Collingwood is finely dispersed in the clay and carbonate mineral phases. Geochemical and production data show that both oil and gas phases are present based on regional thermal maturity. The deposit is richest in the north-central part of the basin with thickest deposition and highest organic content. The Collingwood is a fairly thin deposit and vertical fractures may very easily extend into the surrounding formations. Completion and treatment techniques should be designed around these parameters to enhance production.
Resumo:
Two volcanic debris avalanche deposits (VDADs), both attributed to sector collapse at Volcán Barú, Panama, have been identified after an investigation of deposits that covered more than a thousand square kilometers. The younger Barriles Deposit is constrained by two radiocarbon ages that are ~9 ka; the older Caisán Deposit is at or beyond the radiocarbon range, >43,500 ybp. The total runout length of the Caisán Deposit was ~50 km and it covers 1190 km2. The Barriles Deposit extended to about 45 km and covered an area of 966 km2, overlapping most of the Caisán. The VDADs are blanketed by pyroclastic deposits and contain a predominance of andesitic material likely representing volcanic dome rock which accumulated above the active vent at Barú before collapsing. Despite heavy vegetation in the field area, over 4000 individual hummocks were digitized from aerial photography. Statistical analysis of hummock locations and geometries depict flow patterns of highly- fragmented material reflecting the effects of underlying topography and also help to define the limit of Barriles’ shorter termination. Barriles and Caisán are primarily unconfined, subaerial volcanic deposits that are among the world’s most voluminous. Calculated through two different geospatial processes, thickness values from field measurements and inferences yield volumes >30 km23 for both deposits. VDADs of comparable scale come from Mount Shasta, USA; Socompa, Chile/Argentina; and Shiveluch, Russia. Currently, the modern edifice is 200-400m lower than the pre-collapse Barriles and Caisán summits and only 16-25% of the former edifice has been replaced since the last failure.