969 resultados para secondary bond


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absolute intensities of all except one of the infra-red fundamental vibration bands of dimethyl acetylene have been determined, and the results have been used to compute polar properties of the C—H and C—C bonds. It has been found that if the very probable assumption is made that the acetylenic carbon atoms carry a residual negative charge, the hydrogen atoms in the C—H bonds must carry a residual positive charge. The probable value of the C—H dipole is about 04 Debye, and that of the C—C bond about 1 Debye. Comparisons have been made with the results of similar work with related molecules.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inability to conserve cocoa (Theobroma cacao L.) germplasm via sced storage and the vulnerability of field collections make the establishment of cryopreserved genebanks for the crop a priority. An effective encapsulation-dehydration based cryopreservation system has been developed for cocoa but because the somatic embryos used for freezing arise after a protracted period of callus culture there is concern about maintenance of genetic fidelity during the process. Microsatellite markers for seven of the 10 cocoa linkage groups were used to screen a population of 189 primary somatic embryo-derived emblings and the 43 secondary somatic embryos they gave rise to. Of the primary somatic embryos, 38.1% exhibited polymorphic microsatellite profiles while for secondary somatic embryos the frequency was 23.3%. The same microsatellite markers used to screen another population of 44 secondary somatic embryos cryopreserved through encapsulation-dehydration revealed no polymorphisms. Scanning electron microscopy showed the secondary somatic embryos were derived from cotyledonary epidermal cells rather than callus. The influence of embryo ontogeny on somaclonal variation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth and production of anthocyanin, flavonoid and phenolic compounds were evaluated in Lollo Rosso lettuce 'Revolution' grown continuously under films varying in their ability to transmit LTV radiation (completely transparent to IN, transparent above 320, 350, 370 and 3 80 nm and completely opaque to LTV radiation). Plants were grown from seed under UV transparent and UV blocking films and destructively harvested 3-4 weeks after transplanting. Plants under a complete UV blocking film (UV400) produced up to 2.2 times more total above ground dry weight than plants under the UV transparent film. In contrast, anthocyanin content in plants under the UV blocking film was approximately eight times lower than in plants under a UV transparent film. Furthermore, there was a curvilinear relationship between the anthocyanin content and LTV wavelength cutoff such that above 370 run there was no further reduction in anthocyanin content. Fluorescence measurements indicated that photosynthetic performance index was 15% higher under the presence of UVB and UVA (UV280) than under the presence of UVA (UV320) and 53% higher than in the absence of UV radiation suggesting protection of the photosynthetic apparatus possibly by phenolic compounds. These findings are of particular importance as the potential of UV transmitting films to increase secondary compounds may offer the opportunity to produce plants commercially with increased health benefits compared to those grown under conventional films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3' untranslated regions (3'UTRs) of flaviviruses are reviewed and analyzed in relation to short sequences conserved as direct repeats (DRs). Previously, alignments of the 3'UTRs have been constructed for three of the four recognized flavivirus groups, namely mosquito-borne, tick-borne, and nonclassified flaviviruses (MBFV, TBFV, and NCFV, respectively). This revealed (1) six long repeat sequences (LRSs) in the 3'UTR and open-reading frame (ORF) of the TBFV, (2) duplication of the 3'UTR of the NCFV by intramolecular recombination, and (3) the possibility of a common origin for all DRs within the MBFV. We have now extended this analysis and review it in the context of all previous published analyses. This has been achieved by constructing a robust alignment between all flaviviruses using the published DRs and secondary RNA structures as "anchors" to reveal additional homologies along the 3'UTR. This approach identified nucleotide regions within the MBFV, NKV (no-known vector viruses), and NCFV 3'UTRs that are homologous to different LRSs in the TBFV 3'UTR and ORF. The analysis revealed that some of the DRs and secondary RNA structures described individually within each flavivirus group share common evolutionary origins. The 3'UTR of flaviviruses, and possibly the ORF, therefore probably evolved through multiple duplication of an RNA domain, homologous to the LRS previously identified only in the TBFV. The short DRs in all virus groups appear to represent the evolutionary remnants of these domains rather than resulting from new duplications. The relevance of these flavivirus DRs to evolution, diversity, 3'UTR enhancer function, and virus transmission is reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.