940 resultados para second-order statistics
Resumo:
Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
From the chemical bond viewpoint, second-order nonlinear optical (NLO) tensor coefficients of the family of new oxoborates Ca4ReO(BO3)(3) (CReOB, Re = La, Nd, Sm, Gd, Er, and Y) have been theoretically predicted. The d(11) tensor coefficient of CReOB is predicted to be -11 d(36)(KDP), which is the largest d(ij) tensor that has been found in borate crystals. From the structural characteristic of CReOB, we find the isolated BO33- clusters play a dominant role in contributions to the total nonlinearity, and the largest d(11) tensor of CReOB-type crystals is also ascribed to these BO33- clusters. We also find the NLO property of this family does not change dramatically for different rare-earth elements. The details of the calculation of CGdOB only are presented.
Resumo:
From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
C-2 and LaC2+ were studied using Hartree-Fock(HF), B3LYP (Becke 3-paremeter-Lee-Yang-Parr) density functional method, second-order Moller-Plesset perturbation (MP2) and coupled cluster singles and doubles with non-iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C-2, all the methods performed well for low spin state (singlet), while only HF and B3LYP remained so for high spin state (triplet). For LaC2+, four isomers were presented and fully optimized. The results suggested that linear isomers with C-infinity v and D-infinity h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C-2 upsilon and C-s symmetries, they were local minima except C-2 upsilon at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C-2 upsilon and C-s symmetries offer the largest values and therefore correspond to the most stable structure. For La-C bond lengths, B3LYP gives the shortest, the order is B3LYP
Resumo:
The second-order nonlinear optical (NLO) tenser coefficients of LiXO3 (X = I; Nb or Ta) type complex crystals have been calculated using the chemical bond theory of complex crystals. Contributions of each type of bond to the total second-order NLO coefficient d(ij) and the linear susceptibility X are quantitatively determined. All tensor values thus calculated are in good agreement with experimental data. The Li-O bonds are found to be an important group in the contributions to the total NLO tenser coefficient, especially for those in LiNbO3 and LiTaO3. The importance of Li-O bonds depends on the environment of Li atom in these crystals.
Resumo:
This work considers the isomorphous optically active crystals NaClO3 and NaBrO3. The connection between their second-order nonlinear optical (NLO) responses and chemical bond structures is established, starting from the experimental optical activities. The calculation reproduces the well-known experimental fact that crystals of NaClO3 and NaBrO3 with similar structures have different signs of optical rotation and of second harmonic generation (SHG). Unlike previous bond charge models, the method may include more than one type of bond in the calculation, and therefore may be used to study the optical activity and nonlinear optical properties of more general crystals. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The second-order nonlinear optical (NLO) tensor coefficients of KNdP4O12 (KNP) are theoretically predicted from its crystal structural data, by using the chemical bond theory of complex crystals and the modified bond charge model. Linear and nonlinear optical contributions of each type of bond to the total linearity (chi) and nonlinearity (d(ij)) of KNP are quantitatively determined. The structure-property relationship of KNP is systematically investigated, from the chemical bond viewpoint. Based on the discussion of its structural modifications, we point out that NLO properties of I(NP can be improved effectively using the doping method. Theoretical predictions show KNP to be a promising: self-frequency-doubling laser material.
Resumo:
Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.
Resumo:
From the chemical bond viewpoint, second-order non-linear optical (NLO) tenser coefficients of KNbO3 and LiNbO3 crystals have been calculated. By using the bond-valence theory of complex crystals and the modified bond-charge model, we were able to determine contributions of each type of constituent chemical bond to the total second-order NLO susceptibility. The tenser values thus calculated are in good agreement with experimental data. From the comparison of NLO tenser coefficients of these two crystals, we found that the major NLO contributors are KO12 groups and LiO6 octahedra not the distorted NbO6 octahedra. The difference between their NLO properties arises from their different structural characters, and the high coordination number of constituent elements in KNbO3 makes its valence electrons become more delocalised compared with those of LiNbO3. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
From the chemical bond viewpoint, second-order nonlinear optical (NLO) tensor coefficients of LiNbO3 have been investigated. The single-bond contributions to the second-order NLO susceptibility and the linear susceptibility were determined. The tensor values thus calculated are in good agreement with experimental data. Based on theoretical results of LiNbO3 with Li/Nb = 1, we also have calculated linear and nonlinear optical properties of nonstoichiometric samples with Li/Nb < 1. In the calculation, we find that the Li-O bond is an important type of chemical bond in these LiNbO3 samples, which have large NLO contributions to the total nonlinearities. The refractive indices and second-order NLO tensor coefficients have been determined as a function of the stoichiometry.
Resumo:
A systematic and quantitative research on the structure-property correlation has been carried out in KH2PO4 (KDP), NH4H2PO4 (ADP) and HIO3, based on the dielectric theory of complex crystals and the Levine bond charge model. We, for the first time, successfully solve the problems in the calculation of the nonlinearities of the complex inorganic nonlinear optical (NLO) crystals, which have O-H bonds in their crystal structures. We do this by introducing the bond-valence equation we have set up, calculating the nonlinear optical tensor coefficients d(ijk) of these three compounds, quantitatively determining the contributions of each type of bond to the total second-order NLO tensor coefficient (d(ijk)) of the crystal, and presenting the bond parameters and the linear properties of each kind of bond. For the first time, the NLO coefficient d(36) for ADP was calculated. All calculated results are in good agreement with experimental data. We found that O-H bonds also play an important role in these crystals, except for in the important anionic groups (PO4 groups and IO3 groups). All the results thus calculated show that our method is useful in evaluating the NLO coefficients of the inorganic NLO crystals containing O-H bonds in their structures, and should be a useful tool toward the future research into new nonlinear optical materials of this kind.
Resumo:
For the first time, we present the calculation of the nonlinear optical coefficient of the NdAl3(BO3)(4) (NAB) crystal from a systematic and quantitative standpoint. Based on the dielectric theory of complex crystals and the Levine bond charge model, the method of calculation of the second-order nonlinear optical tensor coefficients of complex crystals has been given systematically. The chemical bond parameters and linear and nonlinear susceptibilities of the NAB crystal have been calculated in detail, and the calculated value of d(11)(NAB) is -5.81 x 10(-9) esu, which agrees with the measured value of 4.06 x 10(-9) esu.
Resumo:
Monolayers of liquid-crystalline polyacrylate containing para-nitro azobenzene (HP6) on the water subphase were characterized by the surface pressure (pi)-area per monomer unit (A) isotherm and were successfully transferred onto glass substrates by the vertical lifting method. The monolayer Langmuis-Blodgett (LB) films transferred at different surface pressures were studied by electron diffraction. The thickness of the monolayer LB film was measured by the transmission electron microscopy folding method. The results of the electron diffraction of the monolayer LB films of HP6 showed that a two-dimensional arrangement exists in the transferred films. According to the results of the pi-A isotherm, electron diffraction and the measured thickness of the monolayer LB film, a molecular arrangement model of HP6 on the water subphase was proposed. The ordered monolayer formation of HP6 showed it to be promising as a second-order non-linear optical material.
Resumo:
The Electrochemical stability of poly(3-methylthiophene) (PMT) thin film modified glassy carbon electrodes was investigated experimentally with successive cyclic voltammetry(CV) The effects of electrolyte solutions on the stability were studied. In the presence of small hydrated anions (less-than-or-equal-to 3.5nm) in the solution, the electroactivity of PMT films decreased with the characteristics of second order kinetics. In a solution with large hydrated anions (greater-than-or-equal-to 4 nm), PMT films have good stability. PMT/GO electrode can electrocatalyse the oxidation of Br- and Cl- anions, and loses its electroactivity rapidly. X-ray photoelectron spectra (XPS) have demonstrated that chlorine has bonded covalently onto the PMT structure after OV cycles in NaCl solutions.
Resumo:
Starting from nonhydrostatic Boussinesq approximation equations, a general method is introduced to deduce the dispersion relationships. A comparative investigation is performed on inertia-gravity wave with horizontal lengths of 100, 10 and 1 km. These are examined using the second-order central difference scheme and the fourth-order compact difference scheme on vertical grids that are currently available from the perspectives of frequency, horizontal and vertical component of group velocity. These findings are compared to analytical solutions. The obtained results suggest that whether for the second-order central difference scheme or for the fourth-order compact difference scheme, Charny-Phillips and Lorenz ( L) grids are suitable for studying waves at the above-mentioned horizontal scales; the Lorenz time-staggered and Charny-Phillips time staggered (CPTS) grids are applicable only to the horizontal scales of less than 10 km, and N grid ( unstaggered grid) is unsuitable for simulating waves at any horizontal scale. Furthermore, by using fourth-order compact difference scheme with higher difference precision, the errors of frequency and group velocity in horizontal and vertical directions produced on all vertical grids in describing the waves with horizontal lengths of 1, 10 and 100 km cannot inevitably be decreased. So in developing a numerical model, the higher-order finite difference scheme, like fourth-order compact difference scheme, should be avoided as much as possible, typically on L and CPTS grids, since it will not only take many efforts to design program but also make the calculated group velocity in horizontal and vertical directions even worse in accuracy.