946 resultados para reverse transcription polymerase chain reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of staphylococcal enterotoxins is decisive for the confirmation of an outbreak and for the determination of the enterotoxigenicity of strains. Since the recognition of their antigenicity, a large number of serological methods for the detection of enterotoxins in food and culture media have been proposed. Since immunological methods require detectable amounts of toxin, molecular biology techniques represent important tools in the microbiology laboratory. In the present study, polymerase chain reaction (PCR) was used to identify genes responsible for the production of enterotoxins and toxic shock syndrome toxin 1 (TSST-1) in S. aureus and coagulase-negative staphylococci (CNS) isolated from patients and the results were compared with those obtained by the reverse passive latex agglutination (RPLA) assay. PCR detection of toxin genes revealed a higher percentage of toxigenic S. aureus strains (46.7%) than the RPLA method (38.3%). Analysis of the toxigenic profile of CNS strains showed that 26.7% of the isolates produced some type of toxin, and one or more toxin-specific genes were detected in 40% of the isolates. These results suggests the need for further studies in order to better characterize the pathogenic potential of CNS and indicate that attention should be paid to the toxigenic capacity of this group of microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astroglial cells are the most abundant cells in the mammalian central nervous system, yet our knowledge about their function in bovine Herpesvirus type 5 (BoHV-5) has been limited. The aim of this study was to detect by immunohistochemistry assay the reactive astrocytes for glial fibrilary acidic protein (GFAP) and vimentin (VIM), considered intermediate filaments of the cytoskeleton, localized in olfactory bulb from natural acute cases of BoHV-5 infection. All samples were submitted to virus isolation, real-time polymerase chain reaction (RT-PCR) and in situ hybridization (ISH) technique to confirm the virus transcription and respective genome. Samples were classified into four groups according to the severity of histological lesions. Groups III and IV, which histological lesions were classified as alacia, gliosis, satellitosis, neuronophagia and neuronal necrosis, 35% (± 1.8-2.1) of the inflammatory mononuclear cells, corresponded to CD3 positive lymphocytes. In the same group, 35% (± 1.8) of astrocytes were described as reactive to GFAP and VIM proteins. An agreement of r = 1.0 (P<0.0001) was found between histological lesions, intermediate filaments expression, viral DNA and transcription and CD3 lymphocytes. However, samples with mild histological lesions, 10.8 to 14.2% of astrocytes were classified as reactive to GFAP and VIM filaments. Our findings suggest that GFAP and VIM reactive astrocytes, in primary site of virus replication, seems to play an important role in neurovirulence, in spite of many questions concerning the virus immunopathology remains unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SNaPshot minisequencing reaction is in increasing use because of its fast detection of many polymorphisms in a single assay. In this work we described a highly sensitive single nucleotide polymorphisms (SNPs) typing method with detection of 42 mitochondrial DNA (mtDNA) SNPs in a single PCR and SNaPshot multiplex reaction in order to allow haplogroup classification in Latin American admixture population. We validated the panel typing 160 Brazilian individuals. DNA was extracted from blood spotted on filter paper using Chelex protocol. Forty SNPs were selected targeting haplogroup-specific mutations in Europeans, Africans and Asians (only precursors of Native Americans haplogroups A2, B2, C1, and D1) and two non-coding SNPs were chosen to increase the power of discrimination between individuals (SNPs positions 16,519 and 16,362). It was done using a modified version of a previously published multiplex SNaPshot minisequencing reaction established to resolve European haplogroups, adding SNPs targeting Africans (L0, L1, L2, L3, and L*) and Asians (A, B, C, and D) haplogroups based on SNPs described at PhyloTree.org build 2. PCR primers were designed using PerlPrimer software and checked with the Autodimer program. Thirty-three primer-pairs were used to amplify 42 SNPs. Using this panel, we were able to successfully classify 160 individuals into their correct haplogroups. Complete SNP profiles were obtained from 10. pg of total DNA. We conclude that it is possible to build and genotype more than 40 mtDNA SNPs in a single multiplex PCR and SNaPshot reaction, with sensitivity and reliability, resolving haplogroup classification in admixture populations. © 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ∼139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS. © 2012 Macmillan Publishers Limited All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During initial development, both X chromosomes are active in females, and one of them must be silenced at the appropriate time in order to dosage compensate their gene expression levels to male counterparts. Silencing involves epigenetic mechanisms, including histone deacetylation. Major X chromosome inactivation (XCI) in bovine occurs between hatching and implantation, although in vitro culture conditions might disrupt the silencing process, increasing or decreasing X-linked gene expression. In this study, we aimed to address the roles of histone deacetylase inhibition by trichostatin A (TSA) on female preimplantation development.We tested the hypothesis that by enhancing histone acetylation, TSA would increase the percentage of embryos achieving 16-cell stage, reducing percentage of embryos blocked at 8-cell stage, and interfere with XCI in IVF embryos. We noticed that after TSA treatment, acetylation levels in individual blastomeres of 8-16 cell embryos were increased twofold on treated embryos, and the samewas detected for blastocysts. Changes among blastomere levels within the same embryo were diminished on TSA group, as low-acetylated blastomeres were no longer detected. The percentage of embryos that reached the 5th cleavage cycle 118 h after IVF, analyzed by Hoechst staining, remained unaltered after TSA treatment. Then, we assessed XIST and G6PD expression in individual female bovine blastocysts by quantitative real-time PCR. Even though G6PD expression remained unaltered after TSA exposure, XIST expression was eightfold decreased, and we also detected a major decrease in the percentage of blastocysts expressing detectable XIST levels after TSA treatment. Based on these results, we conclude that HDAC is involved on XCI process in bovine embryos, and its inhibition might delay X chromosome silencing and attenuate aberrant XIST expression described for IVF embryos. © 2013 Society for Reproduction and Fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polysaccharide β-glucan has biological properties that stimulate the immune system and can prevent chronic pathologies, including cancer. It has been shown to prevent damage to DNA caused by the chemical and physical agents to which humans are exposed. However, the mechanism of β-glucan remains poorly understood. The objective of the present study was to verify the protective effect of β-glucan on the expression of the genes ERCC5 (involved in excision repair of DNA damage), CASP9 (involved in apoptosis), and CYP1A1 (involved in the metabolism of xenobiotics) using real-time polymerase chain reaction and perform metabolic profile measurements on the HepG2 cells. Cells were exposed to only benzo[a]pyrene (B[a]P), β-glucan, or a combination of B[a]P with β-glucan. The results demonstrated that 50 μg/mL β-glucan significantly repressed the expression of the ERCC5 gene when compared with the untreated control cells in these conditions. No change was found in the CASP9 transcript level. However, the CYP1A1 gene expression was also induced by HepG2 cells exposed to B[a]P only or in association with β-glucan, showing its effective protector against damage caused by B[a]P, while HepG2 cells exposed to only β-glucan did not show CYP1A1 modulation. The metabolic profiles showed moderate bioenergetic metabolism with an increase in the metabolites involved in bioenergetic metabolism (alanine, glutamate, creatine and phosphocholine) in cells treated with β-glucan and to a lesser extent treated with B[a]P. Thus, these results demonstrate that the chemopreventive activity of β-glucan may modulate bioenergetic metabolism and gene expression. © 2013 The Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)