861 resultados para redox cycling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC 1.8.2.1), Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alpha beta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa monoheme cytochrome c(552) smbunit (midpoint redox potential, Em(8.0) = +280 mV), The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K-m values for sulfite and cytochrome c(550) were determined to be 27 and 4 mu M, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potentially sexidentate polyamine macrocycle 15-methyl-1,4,7,10,13-pentaazacyclohexadecan-15-amine (1) was prepared via a copper(II)-templated route from 3,6,9-triazaundecan-1,ll-diamine, formaldehyde and nitroethane which first formed the copper(II) complex of the macrocycle 15-methyl-15-nitro-1,4,7,10,13-pentaazacyclohexadecane (2), reduced subsequently with zinc and aqueous acid to yield 1. The hexaamine 1, with five secondary amine groups in the macrocyclic ring and one pendant primary amine group, forms inert sexidentate octahedral complexes with cobalt(III), chromium(III) and iron(III). An X-ray structure of [Co(1)](ClO4)(3) defines the distorted octahedron of the complex cation and shows it is a symmetrical isomer with all nitrogens bound and the central aza group trans to the pendant primary amine group. The [M(1)](3+) ions are all stable indefinitely in aqueous solution and exhibit spectra consistent with MN6 d(3) (Cr), low-spin d(5) (Fe) and low-spin d(6) (Co) electronic ground states. For each complex, a reversible M(III/II) redox couple is observed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pimelic acid formation for biotin biosynthesis in Bacillus subtilis has been proposed to involve a cytochrome P450 encoded by the gene biol. We have subcloned bioI and overexpressed the encoded protein, BioI. A purification protocol was developed utilizing ion exchange, gel filtration, and hydroxyapatite chromatography, Investigation of the purified BioI by UV-visible spectroscopy revealed spectral properties characteristic of a cytochrome P450 enzyme. BioI copurifies with acylated Escherichia coil acyl carrier protein (ACP), suggesting that in vivo a fatty acid substrate may be presented to BioI as an acyl-ACP. A combination of electrospray mass spectrometry of the intact acyl-ACP and GCMS indicated a range of fatty acids were bound to the ACP. A catalytically active system has been established employing E. coli flavodoxin reductase and a novel, heterologous flavodoxin as the redox partners for BioI. In this system, BioI cleaves a carbon-carbon bond of an acyl-ACP to generate a pimeloyl-ACP equivalent, from which pimelic acid is isolated after base-catalyzed saponification. A range of free fatty acids have also been explored as potential alternative substrates for BioI, with C16 binding most tightly to the enzyme. These fatty acids are also metabolized to dicarboxylic acids, but with less regiospecificity than is observed with acyl-ACPs. A possible mechanism for this transformation is discussed. These results strongly support the proposed role for BioI in biotin biosynthesis. In addition, the production of pimeloyl-ACP explains the ability of BioI to function as a pimeloyl CoA source in E. coli, which, unlike B. subtilis, is unable to utilize free pimelic acid for biotin production. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effects of four high-intensity interval-training (HIT) sessions performed over 2 weeks on peak volume of oxygen uptake (VO2peak), the first and second ventilatory thresholds (UT VT2) and peak power output (PPO) in highly trained cyclists. Fourteen highly trained male cyclists (VO2peak = 67.5 +/- 3.7 ml . kg(-1) . min(-1)) performed a ramped cycle test to determine VO2peak VT1 VT2, and PPO. Subjects were divided equally into a HIT group and a control group. The HIT group performed four HIT sessions (20 x 60 s at PPO, 120 s recovery); the V-02peak test was repeated <I wk after the HIT program. Control subjects maintained their regular training program and were reassessed under the same timeline. There was no change in V0(2peak) for either group; however, the HIT group showed a significantly greater increase in VT1, (+22% vs. -3%), VT2 (+15% vs. -1%), and PPO (+4.3 vs. -.4%) compared to controls (all P <.05). This study has demonstrated that HIT can improve VT1, VT2,, and PPO, following only four HIT sessions in already highly trained cyclists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The physical environment plays an important role in influencing participation in physical activity, although which factors of the physical environment have the greatest effect on patterns of activity remain to be determined. We describe the development of a comprehensive instrument to measure the physical environmental factors that may influence walking and cycling in local neighborhoods and report on its reliability. Methods: Following consultation with experts from a variety of fields and a literature search, we developed a Systematic Pedestrian and Cycling Environmental Scan (SPACES) instrument and used it to collect data over a total of 1987 kilometers of roads in metropolitan Perth, Western Australia. The audit instrument is available from the first author on request. Additional environmental information was collected using desktop methods and geographic information systems (GIS) technology. We assessed inter- and intra-rater reliability of the instrument among the 16 observers who collected the data. Results: The observers reported that the audit instrument was easy to use. Both inter- and intra-rater reliability of the environmental scan instrument were generally high. Conclusions: Our instrument provides a reliable, practical, and easy to-use method for collecting detailed street-level data on physical environmental factors that are potential influences on walking in local neighborhoods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the synthesis and characterization of a series of substituted pyridylpentafluroporphyrins, including the separation of the cis- and trans-isomers, the latter being characterized by X-ray crystallography. The spectroscopic and electrochemical properties of the series are dependent on the number of electron withdrawing pentafluorophenyl substituent, but they do not depend on the symmetry of the molecule. Ongoing from the monosubstituted to the more substituted pentafluorophenyl porphyrin H(2)(MPyTFPP) derivative, the Soret bands are slightly red-shifted and their quantum fluorescence yields range from 0.035 to 0.046, consistent with the value of 0.045 for the fully substituted 5,10,15,20-tetrapentafluorophenylporphyrin (dichloromethane solutions). The redox potentials of the reductive processes of monoanion and dianion formation are also sensitive to the number of pentafluoro substituents, shifting 180 mV to more positive values for the P(0)/P(-1) process ongoing from the monopentafluoro to the tris-pentafluorophenyl substituted derivative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An Escherichia coli cell-free transcription/translation system was used to explore the high-level incorporation Of L-3,4-dihydroxyphenylalanine (DOPA) into proteins by replacing tyrosine with DOPA in the reaction mixtures. ESI-MS showed specific incorporation of DOPA in place of tyrosine. More than 90% DOPA incorporation at each tyrosine site was achieved, allowing the recording of clean N-15-HSQC NMR spectra. A redox-staining method specific for DOPA was shown to provide a sensitive and generally applicable method for assessing the cell-free production of proteins. Of four proteins produced in soluble form in the presence of tyrosine, two resulted in insoluble aggregates in the presence of high levels of DOPA. DOPA has been found in human proteins, often in association with various disease states that implicate protein aggregation and/or misfolding. Our results suggest that misfolded and aggregated proteins may result, in principle, from ribosome-mediated misincorporation of intracellular DOPA accumulated due to oxidative stress. High-yield cell-free protein expression systems are uniquely suited to obtain rapid information on solubility and aggregation of nascent polypeptide chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of NFkB by the compound Bay 11–7082 (Bay) induces tolerogenic properties in dendritic cells (DC). While activation of NFkB can be induced by reactive oxygen species (ROS) and thiol/disulfide redox states, the consequences of NFkB blockade on ROS/redox state is not known. To generate immature DC, monocytes were cultured in GM-CSF and IL-4 (with or without Bay) for 48 h. Genes potentially involved in redox regulation were determined using microarray technology and validated using FACS, real-time PCR or western blotting. ROS were measured using two fluorescent dyes DHR-123 and DHE (to detect H2O2 or O2 respectively). We found increased expression of genes associated with reductants such as thioredoxin reductase (TrxR1) and glutathione (GSH), although those associated with the breakdown of H2O2 such as glutathione peroxidase, peroxiredoxins and catalase were decreased. Interestingly, Bay-treated DC produced less ROS in comparison to control DC under basal conditions and following stimulation with various pro-oxidants. In conclusion, Bay-treated DC display not only tolerogenic properties but also an intracellular reducing environment and an impaired ability to produce ROS. We are currently investigating whether exogenous ROS can interfere with the tolerogenic properties of Bay-treated DC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new macropolycyclic hexaamines L(2) and L(4) as their copper(II) complexes have been isolated as products from the condensation of the diamino-substituted macrocyclic complex trans-(6,13-dimethyl-1,4,8,11-tetraazacyclo-tetradecane-6,13-diamine)copper(II) [CuL(1)](2+) with aqueous formaldehyde. Both of the complexes exhibit methylene bridges between the pendant amine and the adjacent co-ordinated macrocyclic N-donors. Their crystal structures have been determined: [CuL(2)(NCS)][SCN], triclinic, space group P (1) over bar, a = 7.133(2), b = 9.813(2), c = 16.745(3) Angstrom, alpha = 101.05(2), beta = 99.36(2), gamma = 99.77(2)degrees, Z = 2; [CuL(4)Cl][ClO4]. H2O, triclinic, space group P (1) over bar, a = 9.3327(8), b = 10.8989(6), c = 12.672(1) Angstrom, alpha = 68.591(6), beta = 78.899(6), gamma = 87.384(6)degrees, Z = 2. The complexes exhibit square-pyramidal geometries, and significantly lower-energy electronic maxima relative to their parent complex [CuL(1)](2+). Electrochemistry of [CuL(2)](2+) revealed a reversible Cu-II-Cu-I redox couple, by contrast to those of macromonocyclic analogues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption (V) over dot(2peak) (30% Rec) and active cycling at 60% (V) over dot(2peak) (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints; [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol.l(-1) to 4.48 (0.19) mmol.l(-1) (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol.l(-1) in the 30% Rec condition and 4.62 (0.12) mmol.l(-1) in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.