865 resultados para real GDP growth
Resumo:
The customary approach to the study of meal size suggests that ‘events’ occurring during a meal lead to its termination. Recent research, however, suggests that a number of decisions are made before eating commences that may affect meal size. The present study sought to address three key research questions around meal size: the extent to which plate cleaning occurs; prevalence of pre-meal planning and its influence on meal size; and the effect of within-meal experiences, notably the development of satiation. To address these, a large-cohort internet-based questionnaire was developed. Results showed that plate cleaning occurred at 91% of meals, and was planned from the outset in 92% of these cases. A significant relationship between plate cleaning and meal planning was observed. Pre meal plans were resistant to modification over the course of the meal: only 18% of participants reported consumption that deviated from expected. By contrast, 28% reported continuing eating beyond satiation, and 57% stated that they could have eaten more at the end of the meal. Logistic regression confirmed pre-meal planning as the most important predictor of consumption. Together, our findings demonstrate the importance of meal planning as a key determinant of meal size and energy intake.
Resumo:
This paper focuses on the ‘real world’ approach to the degree achieved through the first year program, embedding and scaffolding law graduate capabilities through authentic and valid assessment and work integrated learning to assist graduates with transition into the workplace.
Resumo:
The strain-induced self-assembly of suitable semiconductor pairs is an attractive natural route to nanofabrication. To bring to fruition their full potential for actual applications, individual nanostructures need to be combined into ordered patterns in which the location of each single unit is coupled with others and the surrounding environment. Within the Ge/Si model system, we analyze a number of examples of bottom-up strategies in which the shape, positioning, and actual growth mode of epitaxial nanostructures are tailored by manipulating the intrinsic physical processes of heteroepitaxy. The possibility of controlling elastic interactions and, hence, the configuration of self-assembled quantum dots by modulating surface orientation with the miscut angle is discussed. We focus on the use of atomic steps and step bunching as natural templates for nanodot clustering. Then, we consider several different patterning techniques which allow one to harness the natural self-organization dynamics of the system, such as: scanning tunneling nanolithography, focused ion beam and nanoindentation patterning. By analyzing the evolution of the dot assembly by scanning probe microscopy, we follow the pathway which leads to lateral ordering, discussing the thermodynamic and kinetic effects involved in selective nucleation on patterned substrates.
Resumo:
The field of bereavement and grief has been expanding to recognise the potential for growth following the loss of a loved one. This study sought to examine the effect of the relationship to the deceased and perceptions of the severity of the trauma on dimensions of posttraumatic growth. Participants were 146 people who had lost either: a) a first degree relative, b) a second degree relative, or c) a non-related friend. Results demonstrated that both severity and the relationship to the bereaved differentiate posttraumatic growth outcomes. For example, participants who had lost a first degree relative reported higher levels of growth than those who had lost a second degree relative. Consistent with previous research in general trauma populations, the more severe the loss was rated, the higher the levels of growth. Implications for practice are discussed.
Resumo:
This article augments Resource Dependence Theory with Real Options reasoning in order to explain time bounds specification in strategic alliances. Whereas prior work has found about a 50/50 split between alliances that are time bound and those that are open-ended, their substantive differences and antecedents are ill understood. To address this, we suggest that the two alliance modes present different real options trade-offs in adaptation to environmental uncertainty: ceteris paribus, time-bound alliances are likely to provide abandonment options over open-ended alliances, but require additional investments to extend the alliance when this turns out to be desirable after formation. Open-ended alliances are likely to provide growth options over open-ended alliances, but they demand additional effort to abandon the alliance if post-formation circumstances so desire. Therefore, we expect time bounds specification to be a function of environmental uncertainty: organizations in more uncertain environments will be relatively more likely to place time bounds on their strategic alliances. Longitudinal archival and survey data collected amongst 39 industry clusters provides empirical support for our claims, which contribute to the recent renaissance of resource dependence theory by specifying the conditions under which organizations choose different time windows in strategic partnering.
Resumo:
Dhaka’s traffic is heterogeneous, both motorized (MT) and non-motorized (NMT) transport are common. Traffic congestion has become a part of city dwellers’ lives. This paper explores the factors for motor vehicle growth in Dhaka. The scope of the paper will be limited to literature review...
Resumo:
Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.
Resumo:
With the growth of the Web, E-commerce activities are also becoming popular. Product recommendation is an effective way of marketing a product to potential customers. Based on a user’s previous searches, most recommendation methods employ two dimensional models to find relevant items. Such items are then recommended to a user. Further too many irrelevant recommendations worsen the information overload problem for a user. This happens because such models based on vectors and matrices are unable to find the latent relationships that exist between users and searches. Identifying user behaviour is a complex process, and usually involves comparing searches made by him. In most of the cases traditional vector and matrix based methods are used to find prominent features as searched by a user. In this research we employ tensors to find relevant features as searched by users. Such relevant features are then used for making recommendations. Evaluation on real datasets show the effectiveness of such recommendations over vector and matrix based methods.
Resumo:
Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.
Resumo:
Embedded real-time programs rely on external interrupts to respond to events in their physical environment in a timely fashion. Formal program verification theories, such as the refinement calculus, are intended for development of sequential, block-structured code and do not allow for asynchronous control constructs such as interrupt service routines. In this article we extend the refinement calculus to support formal development of interrupt-dependent programs. To do this we: use a timed semantics, to support reasoning about the occurrence of interrupts within bounded time intervals; introduce a restricted form of concurrency, to model composition of interrupt service routines with the main program they may preempt; introduce a semantics for shared variables, to model contention for variables accessed by both interrupt service routines and the main program; and use real-time scheduling theory to discharge timing requirements on interruptible program code.
Resumo:
How bloggers and other independent online commentators criticise, correct, and otherwise challenge conventional journalism has been known for years, but has yet to be fully accepted by journalists; hostilities between the media establishment and the new generation of citizen journalists continue to flare up from time to time. The old gatekeeping monopoly of the mass media has been challenged by the new practice of gatewatching: by individual bloggers and by communities of commentators which may not report the news first-hand, but curate and evaluate the news and other information provided by official sources, and thus provide an important service. And this now takes place ever more rapidly, almost in real time: using the latest social networks, which disseminate, share, comment, question, and debunk news reports within minutes, and using additional platforms that enable fast and effective ad hoc collaboration between users. When hundreds of volunteers can prove within a few days that a German minister has been guilty of serious plagiarism, when the world first learns of earthquakes and tsunamis via Twitter – how does journalism manage to keep up?
Resumo:
This study contributes to the literature on international retailing by addressing a gap in the literature as to how retailers from emerging markets expand internationally. This historical case study analyzes the growth and internationalization process of Chilean retailer Falabella, one of the largest in Latin America and has been able to compete with multinationals from developed countries. The research is based upon primary and secondary data sources including 33 oral interviews with company managers and family executives, as well as industry data, corporate reports, and trade journals. Drawing on institutional theory, the findings show that by belonging to a family conglomerate, engaging in networks and partnerships, organizational learning, and having an experienced management team helped Falabella gain legitimacy in all international markets.